82 lines
68 KiB
Plaintext
82 lines
68 KiB
Plaintext
|
|
{
|
||
|
|
"cells": [
|
||
|
|
{
|
||
|
|
"cell_type": "markdown",
|
||
|
|
"metadata": {},
|
||
|
|
"source": [
|
||
|
|
"\n",
|
||
|
|
"# Pie chart\n",
|
||
|
|
"\n",
|
||
|
|
"A simple pie chart example with matplotlib.\n"
|
||
|
|
]
|
||
|
|
},
|
||
|
|
{
|
||
|
|
"cell_type": "code",
|
||
|
|
"execution_count": 1,
|
||
|
|
"metadata": {
|
||
|
|
"collapsed": false,
|
||
|
|
"jupyter": {
|
||
|
|
"outputs_hidden": false
|
||
|
|
}
|
||
|
|
},
|
||
|
|
"outputs": [
|
||
|
|
{
|
||
|
|
"data": {
|
||
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHcCAYAAABfzjfRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAxzFJREFUeJzsnXdcU2f7/z8ZQCBsQQUcuHHjAvfADWpb7fM82lbbOupoq7baoXXUWvde7dPa1qeutlatiIoTcIsL3KiguEBkr0BCxu+P/HJ/EwENkOSchOv9evmS+5Cc+yKEnM+5pkCj0WhAEARBEARBWC1Crg0gCIIgCIIgqgYJOoIgCIIgCCuHBB1BEARBEISVQ4KOIAiCIAjCyiFBRxAEQRAEYeWQoCMIgiAIgrBySNARBEEQBEFYOSToCIIgCIIgrBwSdARBEARBEFYOCTqCIAiCIAgrhwQdQRAEQRCElUOCjiAIgiAIwsohQUcQBEEQBGHlkKAjCIIgCIKwckjQEQRBEARBWDkk6AiCIAiCIKwcEnQEQRAEQRBWDgk6giAIgiAIK4cEHUEQBEEQhJVDgo4gCIIgCMLKIUFHEARBEARh5ZCgIwiCIAiCsHJI0BEEQRAEQVg5JOgIgiAIgiCsHBJ0BEEQBEEQVg4JOoIgCIIgCCuHBB1BEARBEISVQ4KOIAiCIAjCyiFBRxAEQRAEYeWIuTaAIAjidWg0GhQWFqKgoABFRUVQq9WVOo+dnR2kUimcnZ3h4OBgYisJgiC4gwQdQRAWRyaTISMjA9nZ2cjJyTH4Pzs7G/n5+cjPz0dBQUGVRVx52NnZwdnZGc7OzpBKpRg+fDj69+8PALhw4QKePn0KT09PeHp6wsPDAzVq1ICzs7NJbSAIgjAVJOgIgjALKpUKz549w9OnT/HkyRODf9nZ2Vybh5KSEiYgASA/P59978iRI4iIiCj1HHt7e3h4eMDPzw/169dHvXr1UL9+fdSvXx9+fn4Qi+kjlSAIbqBPH4IgqkRWVhYeP35sINyePn2KlJQUqFQqrs0zGldXV/Z1Tk5OmY9RKBRIS0tDWloarl69avA9kUjEhJ7un07weXl5mdN0giAIEnQEQRjPixcvcOfOHfYvKSkJhYWFXJtlEtzc3NjXubm5FX6+SqXC48eP8fjxY5w+fdrge1KpFPXr10eDBg3QokULtGrVCs2aNSOPHkEQJoM+TQiCKJeioiL8888/TMBlZmZybZLZMMZDV1kKCwtx+/Zt3L59GwcPHgSgDd82a9YMrVq1Yv/8/PxMui9BENUHEnQEQQAA8vLycOvWLdy+fRtjxoyBnZ0d7OzssHXrVsjlcq7NMztV9dBVFIVCgRs3buDGjRvsWM2aNREYGIj27dsjMDAQjRo1gkAgMLstBEFYPyToCKKakpmZiZs3b+LWrVu4desWnj59Co1GAwDo0qULWrRoAbFYjGbNmuH69escW2t+dB46tVptUCBhSV68eIGjR4/i6NGjALQiMzAwEO3atUO3bt3QoEEDTuwiCIL/kKAjiGqCWq1GQkICYmNjcfHiRTx79qzcxyYkJKBFixYAgFatWtm8oLOzs4OTkxMAbbWrqVukVJbc3FycPHkSJ0+exNq1a1GvXj306tULvXr1Qps2bSAUUm94giC0kKAjCBtGLpcjPj4esbGxuHTpktGhxISEBPZ1q1atzGUebzBn/pwpefz4MbZt24Zt27bBw8MD3bt3R69evdC5c2dIJBKuzSMIgkNI0BGEjZGbm4tLly4hNjYW8fHxlcp/u3PnDvu6ZcuWEAgELBxri+gLOkvkz5mC7OxsREREICIiAg4ODggODkavXr3Qs2dPeHh4cG0eQRAWhgQdQdgAKSkpiI2NRWxsLBISEqocMszNzUVKSgp8fX3h6uqKunXr4vHjxyayln9Yo6DTRy6X49SpUzh16hSEQiFat27NQrP169fn2jyCICwACTqCsFJSUlIQFRWF8+fP48mTJyY//507d+Dr6wtA66UjQWcdqNVqXLt2DdeuXcP69esREBCAoUOHYtCgQQaVvARB2BYk6AjCiigqKsKZM2dw4sQJ3L5926x7JSQkoG/fvgC0eXSRkZFm3Y9LrCWHrjIkJCQgISEB69atQ8+ePTF06FB07twZIpGIa9MIgjAhJOgIgudoNBrcunULx48fx7lz51BcXGyRffXz6Gy9MMLSPei4QKFQ4Pjx4zh+/Di8vb0xZswYjBo1imuzCIIwESToCIKn5OXl4fjx4zhy5AhSU1Mtvv+TJ09QWFgIqVSKunXrwtXVFXl5eRa3wxLoCzpb89CVRXp6ukGxzNOnT1GzZk3Y29tzaBVBEFWBBB1B8Ixbt27h8OHDOHfuHEpKSjizQ6PRICEhAR06dIBAIEDLli1x/vx5zuwxJ7aUQ2cMIpEIQ4YMYesvv/wSSUlJGD58OEaOHEmFFARhhZCgIwgeIJPJEBUVhSNHjuDRo0dcm8O4c+cOOnToAEAbdiVBZxv06NEDXl5eAICkpCRcuXIFAPDbb79hy5Yt6NKlC0aOHIm+fftCLKbLBEFYA/SXShAckp+fj4iICBw4cAAFBQVcm1MK/QbDLVu25NAS81LdBN2bb77Jvt69e7fB9zQaDc6dO4dz587B29sbI0eOxHvvvQd3d3fLGkkQRIUgQUcQHJCdnY19+/bh8OHDKCoq4tqccrl37x5UKhVEIhECAgIgFouhVCq5NsvkVCdBV6tWLXTp0gWAtlBi37595T42PT0dGzZswK+//opRo0Zh7NixzLNHEAS/oEGABGFB0tPT8dNPP2HChAn4559/eC3mAKC4uBjJyckAAAcHBzRu3Jhbg8xEdahy1TF06FDWsuTEiRPIysp67XNkMhl+/fVXhISE4LvvvuOkSIcgiFdDgo4gLEBKSgrWr1+PiRMn4uDBg1AoFFybZDS23r5EKBTCxcUFgFa4WNPvpqIIhUK88cYbbP1yuPV1yOVy7NixA/3798fs2bOZ2CcIgntI0BGEGXn06BFWrlyJKVOm4Pjx41YZrrR1Qefs7AyhUPtRaOveuaCgIPj4+ADQtio5e/Zspc5TUlKCPXv2IDQ0FJ9//jnu3btnSjMJgqgElENHEGbg/v372LVrFy5evGj1Q+31CyNsUdBVp/w5/WKIPXv2VPm9qVKpcPDgQRw6dAghISGYNGkS2rRpU0UrCYKoDCToCMKEPH78GP/73/9w+fJlrk0xGenp6cjIyICXlxdq1KiB2rVr4/nz51ybZTJseeyXPh4eHujduzcArRDbu3evyc6t0Whw4sQJnDhxAt27d8fkyZPRsWNHk52fIIjXQyFXgjABOTk5+OGHHzB16lSbEnM6bLl9SXWZEjFkyBDWU+706dNmE+VnzpzBu+++i0mTJuHBgwdm2YMgiNKQoCOIKqBQKLB7925MmjQJhw8fhlqt5toks2DLeXTVJeSqXwyxa9cus+8XHR2NoUOHYuHChcjOzjb7fgRR3SFBRxCV5Pz585gyZQq2bt0KmUzGtTlmhQSddRMYGAh/f38A2hD6yZMnLbKvUqnE9u3bMWDAAPz66682XUFMEFxDgo4gKkl6ejpevHjBtRkW4eHDh2yYe4MGDeDk5MSxRaajOgg6/WKIvXv3WrzaOi8vD8uXL0doaCiOHj1q0b0JorpAgo4gjCQ3NxcRERFsHRYWhrp163JokeVQqVSsNYVIJELz5s05tsh02Lqgc3Z2Rr9+/QBoixf27NnDmS1PnjzBp59+inHjxlF+HUGYGBJ0BPEa1Go1Dh8+jBkzZuCPP/7AxYsXAWiFzfjx4zm2znLoh11tqTDC1qdEDB48GBKJBAAQGxuLR48ecWyRtnBi2LBhWL58OQoLC7k2hyBsAhJ0BPEK7ty5g1mzZhnkye3YsQMlJSUAgHbt2qFTp05cmmgxbLUfna1XueqHW//++2/uDHmJkpIS/Prrrxg0aJCB55sgiMpBgo4gyiA7OxsbN27EwoUL8eTJE4Pvpaen4+DBg2w9btw41g7ClklISGCNaFu0aMGmK1g7thxybd68OZo1awZAK1b5mL/24sULzJw5E2P
|
||
|
|
"text/plain": [
|
||
|
|
"<Figure size 640x480 with 1 Axes>"
|
||
|
|
]
|
||
|
|
},
|
||
|
|
"metadata": {},
|
||
|
|
"output_type": "display_data"
|
||
|
|
}
|
||
|
|
],
|
||
|
|
"source": [
|
||
|
|
"import numpy as np\n",
|
||
|
|
"import matplotlib.pyplot as plt\n",
|
||
|
|
"\n",
|
||
|
|
"n = 20\n",
|
||
|
|
"Z = np.ones(n)\n",
|
||
|
|
"Z[-1] *= 2\n",
|
||
|
|
"\n",
|
||
|
|
"plt.axes((0.025, 0.025, 0.95, 0.95))\n",
|
||
|
|
"\n",
|
||
|
|
"plt.pie(Z, explode=Z * 0.05, colors=[f\"{i / float(n):f}\" for i in range(n)])\n",
|
||
|
|
"plt.axis(\"equal\")\n",
|
||
|
|
"plt.xticks([])\n",
|
||
|
|
"plt.yticks()\n",
|
||
|
|
"\n",
|
||
|
|
"plt.show()"
|
||
|
|
]
|
||
|
|
},
|
||
|
|
{
|
||
|
|
"cell_type": "code",
|
||
|
|
"execution_count": null,
|
||
|
|
"metadata": {},
|
||
|
|
"outputs": [],
|
||
|
|
"source": []
|
||
|
|
}
|
||
|
|
],
|
||
|
|
"metadata": {
|
||
|
|
"kernelspec": {
|
||
|
|
"display_name": "Python 3 (ipykernel)",
|
||
|
|
"language": "python",
|
||
|
|
"name": "python3"
|
||
|
|
},
|
||
|
|
"language_info": {
|
||
|
|
"codemirror_mode": {
|
||
|
|
"name": "ipython",
|
||
|
|
"version": 3
|
||
|
|
},
|
||
|
|
"file_extension": ".py",
|
||
|
|
"mimetype": "text/x-python",
|
||
|
|
"name": "python",
|
||
|
|
"nbconvert_exporter": "python",
|
||
|
|
"pygments_lexer": "ipython3",
|
||
|
|
"version": "3.12.11"
|
||
|
|
}
|
||
|
|
},
|
||
|
|
"nbformat": 4,
|
||
|
|
"nbformat_minor": 4
|
||
|
|
}
|