Files
jupyter-collection/scientific-computing-2/auto_examples_jupyter_2/plot_ugly.ipynb

87 lines
12 KiB
Plaintext
Raw Normal View History

2025-10-21 11:20:44 +08:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"# A example of plotting not quite right\n",
"\n",
"An \"ugly\" example of plotting.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEoCAYAAABPQRaPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAALEwAACxMBAJqcGAAAH09JREFUeJzt3W1sW1cdBvAna9QPVKwZ7dImcioaOTNputLNilYmXs6fNMrwwEFtmQKbCLSVCYs0EGQiQvBhSBXeB8TGWlRHm0q6QSMVsXoaaSFNHV7G+hIQRRC2RpCKJE2HuqYro5tCw+VDl6zGcRz7XPvcl+cnXa32Pb7nb/ue8xxf12uZZVkWiIiIlugW0wUQEZG7MDiIiCgvDA4iIsoLg4OIiPLC4CAiorwwOIiIKC/lpgtYzMqVK7F27VrTZRAR+c7rr7+OS5cuLbjP0cGxdu1aJBIJ02UQEflOV1dX1n28VEVERHlhcBARUV4YHERElBcGBxER5YXBQUREeWFwEBFRXhgcRESUFwYHERHlhcFBRER5YXAQEVFeHP2/HPEyETX/51RqyFAVRET5Y3AYIKIA3AgMEQURxfCgohNRGffxvKNCMDhKSETN/3luwDI8qBREFID0oBBRDBMqCIOjBETU/J8XGpQMDyomEQUg89xb6Fyba0u0GH45XmQiCsCNQbpYKMztm2tPZIqIMlwBOR2Do4hEFIClf/RneJDdRBSA/M9BosUwOIpERAHIfyAyPMguIgpAYWEw91iihTA4iqjQ1RvDg+xSyDnI849yYXAUgYjSPgYHL+kQUVqP5yUrWgyDo0jsGHgcvFQIEQXAnvNn7lhEN2Nw2ExEGa6A/ExEAeDChYqLwVEEdg84EWXr8cjbeP5RsTE4bCSibD8mV320VCLK9mPy/KOFMDhsVqyBJqKKclzyFp5/VAoMDpuIqKIdm6s+ykVEFe3Y/Bt+9P8YHEQeUcwFBhcvdDMGh42KPbhEVFGPT5SLiDJcATkBg8MGIqrofXDFR9mIqJL0w3OQ5jA4bFKqQSWiStIPuQsndSolBocmEVWyvjg5kBOIKMMVkGkMDhtwQidTRFRJ++O5TgCDQ4uI8lW/5EyczKnUGByaSj1oOUmQE4gowxWQSbYEx7FjxxAKhRAMBhGPxzP2v/HGG/jUpz6FD37wg2hoaMCBAwfs6NYoEeXr/sk8EWWkXy5eSDs4Zmdn0dnZiaNHj2JkZASHDh3CyMhIWpt9+/Zhw4YNOHv2LIaGhvD1r38dMzMzul37FgcuzeG5QCZoB8fp06cRDAZRW1uL5cuXo62tDclkMq1NWVkZ/vWvf8GyLLz55pt43/veh/Lyct2ujeOgJT8TUYYrIGMsTYcPH7Z27do1f/vgwYNWZ2dnWpurV69aSilr7dq11ooVK6wXX3wx6/ESiYQVDoetcDhsAXDwZjmgf9M1cPP3+2+6f27F3MLhcNZ5WnvZb1lWxn1lZWVpt3/xi19g8+bNOHHiBP72t7+hubkZH/nIR3DrrbdmPDYWiyEWiwEAQqEQEomEbom2E1EAgFQqZbCKIYgowzWQKSJzn3jNvf83auD551VdXV1Z92lfqgoEAhgfH5+/PTExgerq6rQ2Bw4cwLZt21BWVoZgMIj169fjlVde0e3aKKdcphJRhiugUhNRhit4l4gyXAGZoB0cjY2NGB0dxdjYGGZmZtDX14doNJrWZt26dRgcHAQAvPbaa3j11VdRW1ur27XvOSW8yJ94/vmX9qWq8vJy7N27Fy0tLZidncXOnTvR0NCA/fv3AwA6Ojrw7W9/G1/4whdw5513wrIsPP7441i9erV28SaIKMMVEHHSJrNs+atNkUgEkUgk7b6Ojo75P1dXV+OXv/ylHV0R+ZqIMlxBJhHFIPMZ/nK8AE4bJCLKcAVUSk47/8h/GBwux0mETOL5508MjjyIKMMVkJ+JKMMVEN3A4MiTU1dYIspwBVQKPP/ICRgcRKTFqWFGxcPgWCIRZbiC7DhwiaiUGBx54ARNpogowxXkJqIMV0ClwuDwEBFluAIqJicvXJxcG9mPweERHLhEVCoMjiUQUYYrIHIHEWW4AioFBscScUVPpogowxUsDceIfzA4PEZEGa6AioGTMjkJgyMHEWW4gqXj5EJOIKIMV0DFxuBYAk7IRETvYnAQOZiIMlxBfrjI8gcGhweJKMMVkJ04GZPT2BIcx44dQygUQjAYRDweX7DN0NAQNm/ejIaGBnzsYx+zo9uiE1GGK8gfJxkiKjbt4JidnUVnZyeOHj2KkZERHDp0CCMjI2ltrly5gocffhgvvPAC/vKXv+Dw4cO63ZYMJ2Ki/IkowxVQMWkHx+nTpxEMBlFbW4vly5ejra0NyWQyrc1PfvITbNu2DevWrQMAVFZW6nZLOYgowxWQLhFluILCcLHlfdrBMTk5iZqamvnbgUAAk5OTaW3OnTuH6elpKKUQDodx8OBB3W6LTkQZroCIkzA5U7nuASzLyrivrKws7fb169fx+9//HoODg3jrrbfwoQ99CFu2bMEdd9yR8dienh709PQAuBE4IqJbYoEsAGUw1r02y+BrR/Zw83vo5toJAMLhcNZ92sERCAQwPj4+f3tiYgLV1dUZbVavXo0VK1ZgxYoV+OhHP4qzZ88uGByxWAyxWAwAEAqFkEgkdEssiAiQSqWM9G0Ht9dP7n4Pb2SGxU9MLtbV1ZV1n/alqsbGRoyOjmJsbAwzMzPo6+tDNBpNa9Pa2orf/OY3uH79Oq5du4ZTp06hvr5et2vKQUQZroAKJaIMV6CHgeFt2p84ysvLsXfvXrS0tGB2dhY7d+5EQ0MD9u/fDwDo6OhAfX097rvvPmzatAm33HILdu/ejY0bN2oXT9mlUkOun3z8jpMvOZV2cABAJBJBJBJJu6+joyPt9qOPPopHH33Uju6KTkQZroCIyLn4y/EsuNoj0ieiDFdAxcDg8DgRZbgCypeIMlyBPbj48i4Gh4dx4LoX3ztyMgbH/xFRhisgInI2BscCuNojso+IMlwB2Y3B4QMiynAFtFQiynAFRLkxODyOn57cx0vvmZeeC72LwUFERHlhcNxERBmugIjI+Rgc/4cfrckUEWW4guIRUYYrIDsxOHxCRBmugJbCiwsXLz4nv2Nw+AAHLhHZicHxDhFluAIiIndgcNyEK3MyRUQZrqD4RJThCsguDA4fEVGGK6DFeHnh4uXn5kcMDiIiyguDA/5YiXPFR0R2sSU4jh07hlAohGAwiHg8nrXdmTNnsGzZMvz0pz+1o1sichkRZbgCsoN2cMzOzqKzsxNHjx7FyMgIDh06hJGRkQXbfeMb30BLS4tul0XBFTmZIqIMV1AaHGPeoR0cp0+fRjAYRG1tLZYvX462tjYkk8mMdk899RS2b9+OyspK3S5Jg4gyXAEthJMquUm57gEmJydRU1MzfzsQCODUqVMZbZ5//nmcOHECZ86cWfR4PT096OnpAQCcO3cOIqJb4hJYJerHCfz0XN3CT++Jn56ru4XD4az7tIPDsqyM+8rKytJuf/WrX8Xjjz+OZcuW5TxeLBZDLBYDAIRCISQSCd0SFyWiAACpVKqo/TiFiH+eq1v46T25kRkWP2G5QFdXV9Z92sERCAQwPj4+f3tiYgLV1dVpbYaHh9HW1gYAuHTpEvr7+1FeXo5Pf/rTut3bgicxmSKiDFdAlD/t7zgaGxsxOjqKsbExzMzMoK+vD9FoNK3N2NgYzp8/j/Pnz2PHjh344Q9/6JjQIKLS4SLNG7SDo7y8HHv37kVLSwvq6+vxwAMPoKGhAfv378f+/fvtqJFsJqIMV0A342RKbqN9qQoAIpEIIpFI2n0dHR0Ltv3Rj35kR5e2EFGGKyi9VGrIl8+biOzj+1+Oc7VHVHoiynAFpMP3wUFkiogyXIEZXKy5H4PDp0SU4QoI4CRK7sTg8CFOVkSkw7fBIaIMV0BE5E6+DQ6AK28ik0SU4QqoUL4ODiJTRJThCszios3dGBw+JqIMV+BvnDzJrRgcPsVJi4gK5cvgEFGGKyAici9fBgfAFTeRE4gowxVQIXwbHHSDiDJcgf+IKMM
"text/plain": [
"<Figure size 360x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"import matplotlib\n",
"\n",
"#matplotlib.use(\"Agg\")\n",
"import matplotlib.pyplot as plt\n",
"\n",
"matplotlib.rc(\"grid\", color=\"black\", linestyle=\"-\", linewidth=1)\n",
"\n",
"fig = plt.figure(figsize=(5, 4), dpi=72)\n",
"axes = fig.add_axes((0.01, 0.01, 0.98, 0.98), facecolor=\".75\")\n",
"X = np.linspace(0, 2, 40)\n",
"Y = np.sin(2 * np.pi * X)\n",
"plt.plot(X, Y, lw=0.05, c=\"b\", antialiased=False)\n",
"\n",
"plt.xticks([])\n",
"plt.yticks(np.arange(-1.0, 1.0, 0.2))\n",
"plt.grid()\n",
"ax = plt.gca()\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 4
}