97 lines
3.3 KiB
Plaintext
97 lines
3.3 KiB
Plaintext
|
|
{
|
||
|
|
"cells": [
|
||
|
|
{
|
||
|
|
"cell_type": "markdown",
|
||
|
|
"metadata": {},
|
||
|
|
"source": [
|
||
|
|
"\n# Optimization of a two-parameter function\n"
|
||
|
|
]
|
||
|
|
},
|
||
|
|
{
|
||
|
|
"cell_type": "code",
|
||
|
|
"execution_count": null,
|
||
|
|
"metadata": {
|
||
|
|
"collapsed": false
|
||
|
|
},
|
||
|
|
"outputs": [],
|
||
|
|
"source": [
|
||
|
|
"import numpy as np\n\n\n# Define the function that we are interested in\ndef sixhump(x):\n return (\n (4 - 2.1 * x[0] ** 2 + x[0] ** 4 / 3) * x[0] ** 2\n + x[0] * x[1]\n + (-4 + 4 * x[1] ** 2) * x[1] ** 2\n )\n\n\n# Make a grid to evaluate the function (for plotting)\nxlim = [-2, 2]\nylim = [-1, 1]\nx = np.linspace(*xlim) # type: ignore[call-overload]\ny = np.linspace(*ylim) # type: ignore[call-overload]\nxg, yg = np.meshgrid(x, y)"
|
||
|
|
]
|
||
|
|
},
|
||
|
|
{
|
||
|
|
"cell_type": "markdown",
|
||
|
|
"metadata": {},
|
||
|
|
"source": [
|
||
|
|
"## A 2D image plot of the function\n Simple visualization in 2D\n\n"
|
||
|
|
]
|
||
|
|
},
|
||
|
|
{
|
||
|
|
"cell_type": "code",
|
||
|
|
"execution_count": null,
|
||
|
|
"metadata": {
|
||
|
|
"collapsed": false
|
||
|
|
},
|
||
|
|
"outputs": [],
|
||
|
|
"source": [
|
||
|
|
"import matplotlib.pyplot as plt\n\nplt.figure()\nplt.imshow(sixhump([xg, yg]), extent=xlim + ylim, origin=\"lower\") # type: ignore[arg-type]\nplt.colorbar()"
|
||
|
|
]
|
||
|
|
},
|
||
|
|
{
|
||
|
|
"cell_type": "markdown",
|
||
|
|
"metadata": {},
|
||
|
|
"source": [
|
||
|
|
"## A 3D surface plot of the function\n\n"
|
||
|
|
]
|
||
|
|
},
|
||
|
|
{
|
||
|
|
"cell_type": "code",
|
||
|
|
"execution_count": null,
|
||
|
|
"metadata": {
|
||
|
|
"collapsed": false
|
||
|
|
},
|
||
|
|
"outputs": [],
|
||
|
|
"source": [
|
||
|
|
"from mpl_toolkits.mplot3d import Axes3D\n\nfig = plt.figure()\nax: Axes3D = fig.add_subplot(111, projection=\"3d\")\nsurf = ax.plot_surface(\n xg,\n yg,\n sixhump([xg, yg]),\n rstride=1,\n cstride=1,\n cmap=\"viridis\",\n linewidth=0,\n antialiased=False,\n)\n\nax.set_xlabel(\"x\")\nax.set_ylabel(\"y\")\nax.set_zlabel(\"f(x, y)\")\nax.set_title(\"Six-hump Camelback function\")"
|
||
|
|
]
|
||
|
|
},
|
||
|
|
{
|
||
|
|
"cell_type": "markdown",
|
||
|
|
"metadata": {},
|
||
|
|
"source": [
|
||
|
|
"## Find minima\n\n"
|
||
|
|
]
|
||
|
|
},
|
||
|
|
{
|
||
|
|
"cell_type": "code",
|
||
|
|
"execution_count": null,
|
||
|
|
"metadata": {
|
||
|
|
"collapsed": false
|
||
|
|
},
|
||
|
|
"outputs": [],
|
||
|
|
"source": [
|
||
|
|
"import scipy as sp\n\n# local minimization\nres_local = sp.optimize.minimize(sixhump, x0=[0, 0])\n\n# global minimization\nres_global = sp.optimize.differential_evolution(sixhump, bounds=[xlim, ylim])\n\nplt.figure()\n# Show the function in 2D\nplt.imshow(sixhump([xg, yg]), extent=xlim + ylim, origin=\"lower\") # type: ignore[arg-type]\nplt.colorbar()\n# Mark the minima\nplt.scatter(res_local.x[0], res_local.x[1], label=\"local minimizer\")\nplt.scatter(res_global.x[0], res_global.x[1], label=\"global minimizer\")\nplt.legend()\nplt.show()"
|
||
|
|
]
|
||
|
|
}
|
||
|
|
],
|
||
|
|
"metadata": {
|
||
|
|
"kernelspec": {
|
||
|
|
"display_name": "Python 3",
|
||
|
|
"language": "python",
|
||
|
|
"name": "python3"
|
||
|
|
},
|
||
|
|
"language_info": {
|
||
|
|
"codemirror_mode": {
|
||
|
|
"name": "ipython",
|
||
|
|
"version": 3
|
||
|
|
},
|
||
|
|
"file_extension": ".py",
|
||
|
|
"mimetype": "text/x-python",
|
||
|
|
"name": "python",
|
||
|
|
"nbconvert_exporter": "python",
|
||
|
|
"pygments_lexer": "ipython3",
|
||
|
|
"version": "3.12.11"
|
||
|
|
}
|
||
|
|
},
|
||
|
|
"nbformat": 4,
|
||
|
|
"nbformat_minor": 0
|
||
|
|
}
|