initial upload

This commit is contained in:
2025-10-21 11:20:44 +08:00
parent ad1b18ba06
commit 4333398dbe
131 changed files with 124404 additions and 0 deletions

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Exercise 1\n\nSolution of the exercise 1 with matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nn = 256\nX = np.linspace(-np.pi, np.pi, 256)\nC, S = np.cos(X), np.sin(X)\nplt.plot(X, C)\nplt.plot(X, S)\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Exercise\n\nExercises with matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nplt.figure(figsize=(8, 5), dpi=80)\nplt.subplot(111)\n\nX = np.linspace(-np.pi, np.pi, 256)\nC, S = np.cos(X), np.sin(X)\n\nplt.plot(X, C, color=\"blue\", linewidth=2.5, linestyle=\"-\", label=\"cosine\")\nplt.plot(X, S, color=\"red\", linewidth=2.5, linestyle=\"-\", label=\"sine\")\n\nax = plt.gca()\nax.spines[\"right\"].set_color(\"none\")\nax.spines[\"top\"].set_color(\"none\")\nax.xaxis.set_ticks_position(\"bottom\")\nax.spines[\"bottom\"].set_position((\"data\", 0))\nax.yaxis.set_ticks_position(\"left\")\nax.spines[\"left\"].set_position((\"data\", 0))\n\nplt.xlim(X.min() * 1.1, X.max() * 1.1)\nplt.xticks(\n [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi],\n [r\"$-\\pi$\", r\"$-\\pi/2$\", r\"$0$\", r\"$+\\pi/2$\", r\"$+\\pi$\"],\n)\n\nplt.ylim(C.min() * 1.1, C.max() * 1.1)\nplt.yticks([-1, 1], [r\"$-1$\", r\"$+1$\"])\n\nplt.legend(loc=\"upper left\")\n\nt = 2 * np.pi / 3\nplt.plot([t, t], [0, np.cos(t)], color=\"blue\", linewidth=1.5, linestyle=\"--\")\nplt.scatter(\n [\n t,\n ],\n [\n np.cos(t),\n ],\n 50,\n color=\"blue\",\n)\nplt.annotate(\n r\"$sin(\\frac{2\\pi}{3})=\\frac{\\sqrt{3}}{2}$\",\n xy=(t, np.sin(t)),\n xycoords=\"data\",\n xytext=(10, 30),\n textcoords=\"offset points\",\n fontsize=16,\n arrowprops={\"arrowstyle\": \"->\", \"connectionstyle\": \"arc3,rad=.2\"},\n)\n\nplt.plot([t, t], [0, np.sin(t)], color=\"red\", linewidth=1.5, linestyle=\"--\")\nplt.scatter(\n [\n t,\n ],\n [\n np.sin(t),\n ],\n 50,\n color=\"red\",\n)\nplt.annotate(\n r\"$cos(\\frac{2\\pi}{3})=-\\frac{1}{2}$\",\n xy=(t, np.cos(t)),\n xycoords=\"data\",\n xytext=(-90, -50),\n textcoords=\"offset points\",\n fontsize=16,\n arrowprops={\"arrowstyle\": \"->\", \"connectionstyle\": \"arc3,rad=.2\"},\n)\n\nfor label in ax.get_xticklabels() + ax.get_yticklabels():\n label.set_fontsize(16)\n label.set_bbox({\"facecolor\": \"white\", \"edgecolor\": \"None\", \"alpha\": 0.65})\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Exercise 2\n\nExercise 2 with matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\n# Create a new figure of size 8x6 points, using 100 dots per inch\nplt.figure(figsize=(8, 6), dpi=80)\n\n# Create a new subplot from a grid of 1x1\nplt.subplot(111)\n\nX = np.linspace(-np.pi, np.pi, 256)\nC, S = np.cos(X), np.sin(X)\n\n# Plot cosine using blue color with a continuous line of width 1 (pixels)\nplt.plot(X, C, color=\"blue\", linewidth=1.0, linestyle=\"-\")\n\n# Plot sine using green color with a continuous line of width 1 (pixels)\nplt.plot(X, S, color=\"green\", linewidth=1.0, linestyle=\"-\")\n\n# Set x limits\nplt.xlim(-4.0, 4.0)\n\n# Set x ticks\nplt.xticks(np.linspace(-4, 4, 9))\n\n# Set y limits\nplt.ylim(-1.0, 1.0)\n\n# Set y ticks\nplt.yticks(np.linspace(-1, 1, 5))\n\n# Show result on screen\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Exercise 3\n\nExercise 3 with matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nplt.figure(figsize=(8, 5), dpi=80)\nplt.subplot(111)\n\nX = np.linspace(-np.pi, np.pi, 256)\nC, S = np.cos(X), np.sin(X)\n\nplt.plot(X, C, color=\"blue\", linewidth=2.5, linestyle=\"-\")\nplt.plot(X, S, color=\"red\", linewidth=2.5, linestyle=\"-\")\n\nplt.xlim(-4.0, 4.0)\nplt.xticks(np.linspace(-4, 4, 9))\n\nplt.ylim(-1.0, 1.0)\nplt.yticks(np.linspace(-1, 1, 5))\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Exercise 4\n\nExercise 4 with matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nplt.figure(figsize=(8, 5), dpi=80)\nplt.subplot(111)\n\nX = np.linspace(-np.pi, np.pi, 256)\nS = np.sin(X)\nC = np.cos(X)\n\nplt.plot(X, C, color=\"blue\", linewidth=2.5, linestyle=\"-\")\nplt.plot(X, S, color=\"red\", linewidth=2.5, linestyle=\"-\")\n\nplt.xlim(X.min() * 1.1, X.max() * 1.1)\nplt.ylim(C.min() * 1.1, C.max() * 1.1)\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Exercise 5\n\nExercise 5 with matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nplt.figure(figsize=(8, 5), dpi=80)\nplt.subplot(111)\n\nX = np.linspace(-np.pi, np.pi, 256)\nS = np.sin(X)\nC = np.cos(X)\n\nplt.plot(X, C, color=\"blue\", linewidth=2.5, linestyle=\"-\")\nplt.plot(X, S, color=\"red\", linewidth=2.5, linestyle=\"-\")\n\nplt.xlim(X.min() * 1.1, X.max() * 1.1)\nplt.xticks([-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi])\n\nplt.ylim(C.min() * 1.1, C.max() * 1.1)\nplt.yticks([-1, 0, +1])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Exercise 6\n\nExercise 6 with matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nplt.figure(figsize=(8, 5), dpi=80)\nplt.subplot(111)\n\nX = np.linspace(-np.pi, np.pi, 256)\nC = np.cos(X)\nS = np.sin(X)\n\nplt.plot(X, C, color=\"blue\", linewidth=2.5, linestyle=\"-\")\nplt.plot(X, S, color=\"red\", linewidth=2.5, linestyle=\"-\")\n\nplt.xlim(X.min() * 1.1, X.max() * 1.1)\nplt.xticks(\n [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi],\n [r\"$-\\pi$\", r\"$-\\pi/2$\", r\"$0$\", r\"$+\\pi/2$\", r\"$+\\pi$\"],\n)\n\nplt.ylim(C.min() * 1.1, C.max() * 1.1)\nplt.yticks([-1, 0, +1], [r\"$-1$\", r\"$0$\", r\"$+1$\"])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Exercise 7\n\nExercise 7 with matplotlib\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nplt.figure(figsize=(8, 5), dpi=80)\nplt.subplot(111)\n\nX = np.linspace(-np.pi, np.pi, 256, endpoint=True)\nC = np.cos(X)\nS = np.sin(X)\n\nplt.plot(X, C, color=\"blue\", linewidth=2.5, linestyle=\"-\")\nplt.plot(X, S, color=\"red\", linewidth=2.5, linestyle=\"-\")\n\nax = plt.gca()\nax.spines[\"right\"].set_color(\"none\")\nax.spines[\"top\"].set_color(\"none\")\nax.xaxis.set_ticks_position(\"bottom\")\nax.spines[\"bottom\"].set_position((\"data\", 0))\nax.yaxis.set_ticks_position(\"left\")\nax.spines[\"left\"].set_position((\"data\", 0))\n\nplt.xlim(X.min() * 1.1, X.max() * 1.1)\nplt.xticks(\n [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi],\n [r\"$-\\pi$\", r\"$-\\pi/2$\", r\"$0$\", r\"$+\\pi/2$\", r\"$+\\pi$\"],\n)\n\nplt.ylim(C.min() * 1.1, C.max() * 1.1)\nplt.yticks([-1, 0, +1], [r\"$-1$\", r\"$0$\", r\"$+1$\"])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Exercise 8\n\nExercise 8 with matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nplt.figure(figsize=(8, 5), dpi=80)\nplt.subplot(111)\n\nX = np.linspace(-np.pi, np.pi, 256, endpoint=True)\nC = np.cos(X)\nS = np.sin(X)\n\nplt.plot(X, C, color=\"blue\", linewidth=2.5, linestyle=\"-\", label=\"cosine\")\nplt.plot(X, S, color=\"red\", linewidth=2.5, linestyle=\"-\", label=\"sine\")\n\nax = plt.gca()\nax.spines[\"right\"].set_color(\"none\")\nax.spines[\"top\"].set_color(\"none\")\nax.xaxis.set_ticks_position(\"bottom\")\nax.spines[\"bottom\"].set_position((\"data\", 0))\nax.yaxis.set_ticks_position(\"left\")\nax.spines[\"left\"].set_position((\"data\", 0))\n\nplt.xlim(X.min() * 1.1, X.max() * 1.1)\nplt.xticks(\n [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi],\n [r\"$-\\pi$\", r\"$-\\pi/2$\", r\"$0$\", r\"$+\\pi/2$\", r\"$+\\pi$\"],\n)\n\nplt.ylim(C.min() * 1.1, C.max() * 1.1)\nplt.yticks([-1, +1], [r\"$-1$\", r\"$+1$\"])\n\nplt.legend(loc=\"upper left\")\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Exercise 9\n\nExercise 9 with matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nplt.figure(figsize=(8, 5), dpi=80)\nplt.subplot(111)\n\nX = np.linspace(-np.pi, np.pi, 256, endpoint=True)\nC = np.cos(X)\nS = np.sin(X)\n\nplt.plot(X, C, color=\"blue\", linewidth=2.5, linestyle=\"-\", label=\"cosine\")\nplt.plot(X, S, color=\"red\", linewidth=2.5, linestyle=\"-\", label=\"sine\")\n\nax = plt.gca()\nax.spines[\"right\"].set_color(\"none\")\nax.spines[\"top\"].set_color(\"none\")\nax.xaxis.set_ticks_position(\"bottom\")\nax.spines[\"bottom\"].set_position((\"data\", 0))\nax.yaxis.set_ticks_position(\"left\")\nax.spines[\"left\"].set_position((\"data\", 0))\n\nplt.xlim(X.min() * 1.1, X.max() * 1.1)\nplt.xticks(\n [-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi],\n [r\"$-\\pi$\", r\"$-\\pi/2$\", r\"$0$\", r\"$+\\pi/2$\", r\"$+\\pi$\"],\n)\n\nplt.ylim(C.min() * 1.1, C.max() * 1.1)\nplt.yticks([-1, +1], [r\"$-1$\", r\"$+1$\"])\n\nt = 2 * np.pi / 3\nplt.plot([t, t], [0, np.cos(t)], color=\"blue\", linewidth=1.5, linestyle=\"--\")\nplt.scatter(\n [\n t,\n ],\n [\n np.cos(t),\n ],\n 50,\n color=\"blue\",\n)\nplt.annotate(\n r\"$sin(\\frac{2\\pi}{3})=\\frac{\\sqrt{3}}{2}$\",\n xy=(t, np.sin(t)),\n xycoords=\"data\",\n xytext=(+10, +30),\n textcoords=\"offset points\",\n fontsize=16,\n arrowprops={\"arrowstyle\": \"->\", \"connectionstyle\": \"arc3,rad=.2\"},\n)\n\nplt.plot([t, t], [0, np.sin(t)], color=\"red\", linewidth=1.5, linestyle=\"--\")\nplt.scatter(\n [\n t,\n ],\n [\n np.sin(t),\n ],\n 50,\n color=\"red\",\n)\nplt.annotate(\n r\"$cos(\\frac{2\\pi}{3})=-\\frac{1}{2}$\",\n xy=(t, np.cos(t)),\n xycoords=\"data\",\n xytext=(-90, -50),\n textcoords=\"offset points\",\n fontsize=16,\n arrowprops={\"arrowstyle\": \"->\", \"connectionstyle\": \"arc3,rad=.2\"},\n)\n\nplt.legend(loc=\"upper left\")\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Aliased versus anti-aliased\n\nThis example demonstrates aliased versus anti-aliased text.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n\nsize = 128, 16\ndpi = 72.0\nfigsize = size[0] / float(dpi), size[1] / float(dpi)\nfig = plt.figure(figsize=figsize, dpi=dpi)\nfig.patch.set_alpha(0)\n\nplt.axes((0, 0, 1, 1), frameon=False)\n\nplt.rcParams[\"text.antialiased\"] = False\nplt.text(0.5, 0.5, \"Aliased\", ha=\"center\", va=\"center\")\n\nplt.xlim(0, 1)\nplt.ylim(0, 1)\nplt.xticks([])\nplt.yticks([])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Alpha: transparency\n\nThis example demonstrates using alpha for transparency.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n\nsize = 256, 16\ndpi = 72.0\nfigsize = size[0] / float(dpi), size[1] / float(dpi)\nfig = plt.figure(figsize=figsize, dpi=dpi)\nfig.patch.set_alpha(0)\nplt.axes((0, 0.1, 1, 0.8), frameon=False)\n\nfor i in range(1, 11):\n plt.axvline(i, linewidth=1, color=\"blue\", alpha=0.25 + 0.75 * i / 10.0)\n\nplt.xlim(0, 11)\nplt.xticks([])\nplt.yticks([])\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Aliased versus anti-aliased\n\nThe example shows aliased versus anti-aliased text.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n\nsize = 128, 16\ndpi = 72.0\nfigsize = size[0] / float(dpi), size[1] / float(dpi)\nfig = plt.figure(figsize=figsize, dpi=dpi)\nfig.patch.set_alpha(0)\nplt.axes((0, 0, 1, 1), frameon=False)\n\nplt.rcParams[\"text.antialiased\"] = True\nplt.text(0.5, 0.5, \"Anti-aliased\", ha=\"center\", va=\"center\")\n\nplt.xlim(0, 1)\nplt.ylim(0, 1)\nplt.xticks([])\nplt.yticks([])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# The colors matplotlib line plots\n\nAn example demoing the various colors taken by matplotlib's plot.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n\nsize = 256, 16\ndpi = 72.0\nfigsize = size[0] / float(dpi), size[1] / float(dpi)\nfig = plt.figure(figsize=figsize, dpi=dpi)\nfig.patch.set_alpha(0)\nplt.axes((0, 0.1, 1, 0.8), frameon=False)\n\nfor i in range(1, 11):\n plt.plot([i, i], [0, 1], lw=1.5)\n\nplt.xlim(0, 11)\nplt.xticks([])\nplt.yticks([])\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Colormaps\n\nAn example plotting the matplotlib colormaps.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\n\nimport matplotlib\nimport matplotlib.pyplot as plt\n\n\nplt.rc(\"text\", usetex=False)\na = np.outer(np.arange(0, 1, 0.01), np.ones(10))\n\nplt.figure(figsize=(10, 5))\nplt.subplots_adjust(top=0.8, bottom=0.05, left=0.01, right=0.99)\nmaps = [m for m in matplotlib.colormaps if not m.endswith(\"_r\")]\nmaps.sort()\nl = len(maps) + 1\n\nfor i, m in enumerate(maps):\n plt.subplot(1, l, i + 1)\n plt.axis(\"off\")\n plt.imshow(a, aspect=\"auto\", cmap=plt.get_cmap(m), origin=\"lower\")\n plt.title(m, rotation=90, fontsize=10, va=\"bottom\")\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Dash capstyle\n\nAn example demoing the dash capstyle.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nsize = 256, 16\ndpi = 72.0\nfigsize = size[0] / float(dpi), size[1] / float(dpi)\nfig = plt.figure(figsize=figsize, dpi=dpi)\nfig.patch.set_alpha(0)\nplt.axes((0, 0, 1, 1), frameon=False)\n\nplt.plot(\n np.arange(4),\n np.ones(4),\n color=\"blue\",\n dashes=[15, 15],\n linewidth=8,\n dash_capstyle=\"butt\",\n)\n\nplt.plot(\n 5 + np.arange(4),\n np.ones(4),\n color=\"blue\",\n dashes=[15, 15],\n linewidth=8,\n dash_capstyle=\"round\",\n)\n\nplt.plot(\n 10 + np.arange(4),\n np.ones(4),\n color=\"blue\",\n dashes=[15, 15],\n linewidth=8,\n dash_capstyle=\"projecting\",\n)\n\nplt.xlim(0, 14)\nplt.xticks([])\nplt.yticks([])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Dash join style\n\nExample demoing the dash join style.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nsize = 256, 16\ndpi = 72.0\nfigsize = size[0] / float(dpi), size[1] / float(dpi)\nfig = plt.figure(figsize=figsize, dpi=dpi)\nfig.patch.set_alpha(0)\nplt.axes((0, 0, 1, 1), frameon=False)\n\nplt.plot(\n np.arange(3),\n [0, 1, 0],\n color=\"blue\",\n dashes=[12, 5],\n linewidth=8,\n dash_joinstyle=\"miter\",\n)\nplt.plot(\n 4 + np.arange(3),\n [0, 1, 0],\n color=\"blue\",\n dashes=[12, 5],\n linewidth=8,\n dash_joinstyle=\"bevel\",\n)\nplt.plot(\n 8 + np.arange(3),\n [0, 1, 0],\n color=\"blue\",\n dashes=[12, 5],\n linewidth=8,\n dash_joinstyle=\"round\",\n)\n\nplt.xlim(0, 12)\nplt.ylim(-1, 2)\nplt.xticks([])\nplt.yticks([])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Linestyles\n\nPlot the different line styles.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\n\ndef linestyle(ls, i):\n X = i * 0.5 * np.ones(11)\n Y = np.arange(11)\n plt.plot(\n X,\n Y,\n ls,\n color=(0.0, 0.0, 1, 1),\n lw=3,\n ms=8,\n mfc=(0.75, 0.75, 1, 1),\n mec=(0, 0, 1, 1),\n )\n plt.text(0.5 * i, 10.25, ls, rotation=90, fontsize=15, va=\"bottom\")\n\n\nlinestyles = [\n \"-\",\n \"--\",\n \":\",\n \"-.\",\n \".\",\n \",\",\n \"o\",\n \"^\",\n \"v\",\n \"<\",\n \">\",\n \"s\",\n \"+\",\n \"x\",\n \"d\",\n \"1\",\n \"2\",\n \"3\",\n \"4\",\n \"h\",\n \"p\",\n \"|\",\n \"_\",\n \"D\",\n \"H\",\n]\nn_lines = len(linestyles)\n\nsize = 20 * n_lines, 300\ndpi = 72.0\nfigsize = size[0] / float(dpi), size[1] / float(dpi)\nfig = plt.figure(figsize=figsize, dpi=dpi)\nplt.axes((0, 0.01, 1, 0.9), frameon=False)\n\nfor i, ls in enumerate(linestyles):\n linestyle(ls, i)\n\nplt.xlim(-0.2, 0.2 + 0.5 * n_lines)\nplt.xticks([])\nplt.yticks([])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Linewidth\n\nPlot various linewidth with matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n\nsize = 256, 16\ndpi = 72.0\nfigsize = size[0] / float(dpi), size[1] / float(dpi)\nfig = plt.figure(figsize=figsize, dpi=dpi)\nfig.patch.set_alpha(0)\nplt.axes((0, 0.1, 1, 0.8), frameon=False)\n\nfor i in range(1, 11):\n plt.plot([i, i], [0, 1], color=\"b\", lw=i / 2.0)\n\nplt.xlim(0, 11)\nplt.ylim(0, 1)\nplt.xticks([])\nplt.yticks([])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Markers\n\nShow the different markers of matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\n\ndef marker(m, i):\n X = i * 0.5 * np.ones(11)\n Y = np.arange(11)\n\n plt.plot(X, Y, lw=1, marker=m, ms=10, mfc=(0.75, 0.75, 1, 1), mec=(0, 0, 1, 1))\n plt.text(0.5 * i, 10.25, repr(m), rotation=90, fontsize=15, va=\"bottom\")\n\n\nmarkers = [\n 0,\n 1,\n 2,\n 3,\n 4,\n 5,\n 6,\n 7,\n \"o\",\n \"h\",\n \"_\",\n \"1\",\n \"2\",\n \"3\",\n \"4\",\n \"8\",\n \"p\",\n \"^\",\n \"v\",\n \"<\",\n \">\",\n \"|\",\n \"d\",\n \",\",\n \"+\",\n \"s\",\n \"*\",\n \"|\",\n \"x\",\n \"D\",\n \"H\",\n \".\",\n]\n\nn_markers = len(markers)\n\nsize = 20 * n_markers, 300\ndpi = 72.0\nfigsize = size[0] / float(dpi), size[1] / float(dpi)\nfig = plt.figure(figsize=figsize, dpi=dpi)\nplt.axes((0, 0.01, 1, 0.9), frameon=False)\n\nfor i, m in enumerate(markers):\n marker(m, i)\n\nplt.xlim(-0.2, 0.2 + 0.5 * n_markers)\nplt.xticks([])\nplt.yticks([])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Marker edge color\n\nDemo the marker edge color of matplotlib's markers.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nsize = 256, 16\ndpi = 72.0\nfigsize = size[0] / float(dpi), size[1] / float(dpi)\nfig = plt.figure(figsize=figsize, dpi=dpi)\nfig.patch.set_alpha(0)\nplt.axes((0, 0, 1, 1), frameon=False)\n\nrng = np.random.default_rng()\n\nfor i in range(1, 11):\n r, g, b = np.random.uniform(0, 1, 3)\n plt.plot(\n [\n i,\n ],\n [\n 1,\n ],\n \"s\",\n markersize=5,\n markerfacecolor=\"w\",\n markeredgewidth=1.5,\n markeredgecolor=(r, g, b, 1),\n )\n\nplt.xlim(0, 11)\nplt.xticks([])\nplt.yticks([])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Marker edge width\n\nDemo the marker edge widths of matplotlib's markers.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n\nsize = 256, 16\ndpi = 72.0\nfigsize = size[0] / float(dpi), size[1] / float(dpi)\nfig = plt.figure(figsize=figsize, dpi=dpi)\nfig.patch.set_alpha(0)\nplt.axes((0, 0, 1, 1), frameon=False)\n\nfor i in range(1, 11):\n plt.plot(\n [\n i,\n ],\n [\n 1,\n ],\n \"s\",\n markersize=5,\n markeredgewidth=1 + i / 10.0,\n markeredgecolor=\"k\",\n markerfacecolor=\"w\",\n )\nplt.xlim(0, 11)\nplt.xticks([])\nplt.yticks([])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Marker face color\n\nDemo the marker face color of matplotlib's markers.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nsize = 256, 16\ndpi = 72.0\nfigsize = size[0] / float(dpi), size[1] / float(dpi)\nfig = plt.figure(figsize=figsize, dpi=dpi)\nfig.patch.set_alpha(0)\nplt.axes((0, 0, 1, 1), frameon=False)\n\nrng = np.random.default_rng()\n\nfor i in range(1, 11):\n r, g, b = np.random.uniform(0, 1, 3)\n plt.plot(\n [\n i,\n ],\n [\n 1,\n ],\n \"s\",\n markersize=8,\n markerfacecolor=(r, g, b, 1),\n markeredgewidth=0.1,\n markeredgecolor=(0, 0, 0, 0.5),\n )\nplt.xlim(0, 11)\nplt.xticks([])\nplt.yticks([])\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Marker size\n\nDemo the marker size control in matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n\nsize = 256, 16\ndpi = 72.0\nfigsize = size[0] / float(dpi), size[1] / float(dpi)\nfig = plt.figure(figsize=figsize, dpi=dpi)\nfig.patch.set_alpha(0)\nplt.axes((0, 0, 1, 1), frameon=False)\n\nfor i in range(1, 11):\n plt.plot(\n [\n i,\n ],\n [\n 1,\n ],\n \"s\",\n markersize=i,\n markerfacecolor=\"w\",\n markeredgewidth=0.5,\n markeredgecolor=\"k\",\n )\n\nplt.xlim(0, 11)\nplt.xticks([])\nplt.yticks([])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Solid cap style\n\nAn example demoing the solide cap style in matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nsize = 256, 16\ndpi = 72.0\nfigsize = size[0] / float(dpi), size[1] / float(dpi)\nfig = plt.figure(figsize=figsize, dpi=dpi)\nfig.patch.set_alpha(0)\nplt.axes((0, 0, 1, 1), frameon=False)\n\nplt.plot(np.arange(4), np.ones(4), color=\"blue\", linewidth=8, solid_capstyle=\"butt\")\n\nplt.plot(\n 5 + np.arange(4), np.ones(4), color=\"blue\", linewidth=8, solid_capstyle=\"round\"\n)\n\nplt.plot(\n 10 + np.arange(4),\n np.ones(4),\n color=\"blue\",\n linewidth=8,\n solid_capstyle=\"projecting\",\n)\n\nplt.xlim(0, 14)\nplt.xticks([])\nplt.yticks([])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Solid joint style\n\nAn example showing the different solid joint styles in matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nsize = 256, 16\ndpi = 72.0\nfigsize = size[0] / float(dpi), size[1] / float(dpi)\nfig = plt.figure(figsize=figsize, dpi=dpi)\nfig.patch.set_alpha(0)\nplt.axes((0, 0, 1, 1), frameon=False)\n\nplt.plot(np.arange(3), [0, 1, 0], color=\"blue\", linewidth=8, solid_joinstyle=\"miter\")\nplt.plot(\n 4 + np.arange(3), [0, 1, 0], color=\"blue\", linewidth=8, solid_joinstyle=\"bevel\"\n)\nplt.plot(\n 8 + np.arange(3), [0, 1, 0], color=\"blue\", linewidth=8, solid_joinstyle=\"round\"\n)\n\nplt.xlim(0, 12)\nplt.ylim(-1, 2)\nplt.xticks([])\nplt.yticks([])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Locators for tick on axis\n\nAn example demoing different locators to position ticks on axis for\nmatplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\n\nfrom matplotlib import ticker\nimport matplotlib.pyplot as plt\n\n\ndef tickline():\n plt.xlim(0, 10), plt.ylim(-1, 1), plt.yticks([])\n ax = plt.gca()\n ax.spines[\"right\"].set_color(\"none\")\n ax.spines[\"left\"].set_color(\"none\")\n ax.spines[\"top\"].set_color(\"none\")\n ax.xaxis.set_ticks_position(\"bottom\")\n ax.spines[\"bottom\"].set_position((\"data\", 0))\n ax.yaxis.set_ticks_position(\"none\")\n ax.xaxis.set_minor_locator(ticker.MultipleLocator(0.1))\n ax.plot(np.arange(11), np.zeros(11))\n return ax\n\n\nlocators = [\n \"ticker.NullLocator()\",\n \"ticker.MultipleLocator(1.0)\",\n \"ticker.FixedLocator([0, 2, 8, 9, 10])\",\n \"ticker.IndexLocator(3, 1)\",\n \"ticker.LinearLocator(5)\",\n \"ticker.LogLocator(2, [1.0])\",\n \"ticker.AutoLocator()\",\n]\n\nn_locators = len(locators)\n\nsize = 512, 40 * n_locators\ndpi = 72.0\nfigsize = size[0] / float(dpi), size[1] / float(dpi)\nfig = plt.figure(figsize=figsize, dpi=dpi)\nfig.patch.set_alpha(0)\n\n\nfor i, locator in enumerate(locators):\n plt.subplot(n_locators, 1, i + 1)\n ax = tickline()\n ax.xaxis.set_major_locator(eval(locator))\n plt.text(5, 0.3, locator[7:], ha=\"center\")\n\nplt.subplots_adjust(bottom=0.01, top=0.99, left=0.01, right=0.99)\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,87 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"# Subplots\n",
"\n",
"Show multiple subplots in matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHbCAYAAABCywdpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAACkdJREFUeJzt27Fuq1gUQNGLlRant8L/f1gkPsD0ZopRUo0iojw/Z3vWqq/QKTjSxoZp3/d9AACQdXr0AAAA/IygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABD3cuTQ7XYb67qOeZ7HNE33ngkA4H9v3/exbdu4XC7jdPr6N7hDQbeu61iW5Y8MBwDAce/v7+Pt7e3LM4eCbp7nzwuez+efTwYAwJeu1+tYluWzw75yKOg+/mY9n8+CDgDgLzryupuPIgAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIh7OXJo3/cxxhjX6/WuwwAA8K+P7vrosK8cCrpt28YYYyzL8oOxAAD4rm3bxuvr65dnpv1A9t1ut7Gu65jneUzT9McGBADgv+37PrZtG5fLZZxOX78ldyjoAAD4vXwUAQAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAg7uXIodvtNtZ1HfM8j2ma7j0T3M2+72PbtnG5XMbp9PjnGbvFM7BXcB/f2a1DQbeu61iW5Y8MB7/B+/v7eHt7e/QYdounYq/gPo7s1qGgm+f584Ln8/nnk8GDXK/XsSzL5z39aHaLZ2Cv4D6+s1uHgu7jJ+vz+Ww5eAq/5W8Yu8UzsVdwH0d26/EvOwAA8COCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDECToAgDhBBwAQJ+gAAOIEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIA4QQcAECfoAADiBB0AQJygAwCIE3QAAHGCDgAgTtABAMQJOgCAOEEHABAn6AAA4gQdAECcoAMAiBN0AABxgg4AIE7QAQDEvRw5tO/7GGOM6/V612Hg3j7u4Y97+tHsFs/AXsF9fGe3DgXdtm1jjDGWZfnBWPB7bNs2Xl9fHz2G3eKp2Cu4jyO7Ne0Hsu92u411Xcc8z2Oapj82IPxt+76PbdvG5XIZp9Pj3ziwWzwDewX38Z3dOhR0AAD8Xo9/lAIA4EcEHQBAnKADAIgTdAAAcYIOACBO0AEAxAk6AIC4fwDtDPHesVMI6QAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"fig = plt.figure()\n",
"fig.subplots_adjust(bottom=0.025, left=0.025, top=0.975, right=0.975)\n",
"\n",
"plt.subplot(2, 1, 1)\n",
"plt.xticks([]), plt.yticks([])\n",
"\n",
"plt.subplot(2, 3, 4)\n",
"plt.xticks([])\n",
"plt.yticks([])\n",
"\n",
"plt.subplot(2, 3, 5)\n",
"plt.xticks([])\n",
"plt.yticks([])\n",
"\n",
"plt.subplot(2, 3, 6)\n",
"plt.xticks([])\n",
"plt.yticks([])\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Plotting a vector field: quiver\n\nA simple example showing how to plot a vector field (quiver) with\nmatplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nn = 8\nX, Y = np.mgrid[0:n, 0:n]\nT = np.arctan2(Y - n / 2.0, X - n / 2.0)\nR = 10 + np.sqrt((Y - n / 2.0) ** 2 + (X - n / 2.0) ** 2)\nU, V = R * np.cos(T), R * np.sin(T)\n\nplt.axes((0.025, 0.025, 0.95, 0.95))\nplt.quiver(X, Y, U, V, R, alpha=0.5)\nplt.quiver(X, Y, U, V, edgecolor=\"k\", facecolor=\"None\", linewidth=0.5)\n\nplt.xlim(-1, n)\nplt.xticks([])\nplt.ylim(-1, n)\nplt.yticks([])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Subplot grid\n\nAn example showing the subplot grid in matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n\nplt.figure(figsize=(6, 4))\nplt.subplot(2, 2, 1)\nplt.xticks([])\nplt.yticks([])\nplt.text(0.5, 0.5, \"subplot(2,2,1)\", ha=\"center\", va=\"center\", size=20, alpha=0.5)\n\nplt.subplot(2, 2, 2)\nplt.xticks([])\nplt.yticks([])\nplt.text(0.5, 0.5, \"subplot(2,2,2)\", ha=\"center\", va=\"center\", size=20, alpha=0.5)\n\nplt.subplot(2, 2, 3)\nplt.xticks([])\nplt.yticks([])\n\nplt.text(0.5, 0.5, \"subplot(2,2,3)\", ha=\"center\", va=\"center\", size=20, alpha=0.5)\n\nplt.subplot(2, 2, 4)\nplt.xticks([])\nplt.yticks([])\nplt.text(0.5, 0.5, \"subplot(2,2,4)\", ha=\"center\", va=\"center\", size=20, alpha=0.5)\n\nplt.tight_layout()\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Horizontal arrangement of subplots\n\nAn example showing horizontal arrangement of subplots with matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n\nplt.figure(figsize=(6, 4))\nplt.subplot(2, 1, 1)\nplt.xticks([])\nplt.yticks([])\nplt.text(0.5, 0.5, \"subplot(2,1,1)\", ha=\"center\", va=\"center\", size=24, alpha=0.5)\n\nplt.subplot(2, 1, 2)\nplt.xticks([])\nplt.yticks([])\nplt.text(0.5, 0.5, \"subplot(2,1,2)\", ha=\"center\", va=\"center\", size=24, alpha=0.5)\n\nplt.tight_layout()\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Subplot plot arrangement vertical\n\nAn example showing vertical arrangement of subplots with matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n\n\nplt.figure(figsize=(6, 4))\nplt.subplot(1, 2, 1)\nplt.xticks([])\nplt.yticks([])\nplt.text(0.5, 0.5, \"subplot(1,2,1)\", ha=\"center\", va=\"center\", size=24, alpha=0.5)\n\nplt.subplot(1, 2, 2)\nplt.xticks([])\nplt.yticks([])\nplt.text(0.5, 0.5, \"subplot(1,2,2)\", ha=\"center\", va=\"center\", size=24, alpha=0.5)\n\nplt.tight_layout()\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Demo text printing\n\nA example showing off elaborate text printing with matplotlib.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\n\neqs = []\neqs.append(\n r\"$W^{3\\beta}_{\\delta_1 \\rho_1 \\sigma_2} = U^{3\\beta}_{\\delta_1 \\rho_1} + \\frac{1}{8 \\pi 2} \\int^{\\alpha_2}_{\\alpha_2} d \\alpha^\\prime_2 \\left[\\frac{ U^{2\\beta}_{\\delta_1 \\rho_1} - \\alpha^\\prime_2U^{1\\beta}_{\\rho_1 \\sigma_2} }{U^{0\\beta}_{\\rho_1 \\sigma_2}}\\right]$\"\n)\neqs.append(\n r\"$\\frac{d\\rho}{d t} + \\rho \\vec{v}\\cdot\\nabla\\vec{v} = -\\nabla p + \\mu\\nabla^2 \\vec{v} + \\rho \\vec{g}$\"\n)\neqs.append(r\"$\\int_{-\\infty}^\\infty e^{-x^2}dx=\\sqrt{\\pi}$\")\neqs.append(r\"$E = mc^2 = \\sqrt{{m_0}^2c^4 + p^2c^2}$\")\neqs.append(r\"$F_G = G\\frac{m_1m_2}{r^2}$\")\n\nplt.axes((0.025, 0.025, 0.95, 0.95))\n\nrng = np.random.default_rng()\n\nfor i in range(24):\n index = rng.integers(0, len(eqs))\n eq = eqs[index]\n size = np.random.uniform(12, 32)\n x, y = np.random.uniform(0, 1, 2)\n alpha = np.random.uniform(0.25, 0.75)\n plt.text(\n x,\n y,\n eq,\n ha=\"center\",\n va=\"center\",\n color=\"#11557c\",\n alpha=alpha,\n transform=plt.gca().transAxes,\n fontsize=size,\n clip_on=True,\n )\nplt.xticks([])\nplt.yticks([])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Bar plot advanced\n\nAn more elaborate bar plot example\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nn = 16\nX = np.arange(n)\nY1 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)\nY2 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)\nplt.bar(X, Y1, facecolor=\"#9999ff\", edgecolor=\"white\")\nplt.bar(X, -Y2, facecolor=\"#ff9999\", edgecolor=\"white\")\nplt.xlim(-0.5, n)\nplt.xticks([])\nplt.ylim(-1, 1)\nplt.yticks([])\n\n\n# Add a title and a box around it\nfrom matplotlib.patches import FancyBboxPatch\n\nax = plt.gca()\nax.add_patch(\n FancyBboxPatch(\n (-0.05, 0.87),\n width=0.66,\n height=0.165,\n clip_on=False,\n boxstyle=\"square,pad=0\",\n zorder=3,\n facecolor=\"white\",\n alpha=1.0,\n transform=plt.gca().transAxes,\n )\n)\n\nplt.text(\n -0.05,\n 1.02,\n \" Bar Plot: plt.bar(...)\\n\",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"xx-large\",\n transform=plt.gca().transAxes,\n)\n\nplt.text(\n -0.05,\n 1.01,\n \"\\n\\n Make a bar plot with rectangles \",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"large\",\n transform=plt.gca().transAxes,\n)\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Boxplot with matplotlib\n\nAn example of doing box plots with matplotlib\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\n\nfig = plt.figure(figsize=(8, 5))\naxes = plt.subplot(111)\n\nn = 5\nZ = np.zeros((n, 4))\nX = np.linspace(0, 2, n)\nrng = np.random.default_rng()\nY = rng.random((n, 4))\nplt.boxplot(Y)\n\nplt.xticks([])\nplt.yticks([])\n\n\n# Add a title and a box around it\nfrom matplotlib.patches import FancyBboxPatch\n\nax = plt.gca()\nax.add_patch(\n FancyBboxPatch(\n (-0.05, 0.87),\n width=0.66,\n height=0.165,\n clip_on=False,\n boxstyle=\"square,pad=0\",\n zorder=3,\n facecolor=\"white\",\n alpha=1.0,\n transform=plt.gca().transAxes,\n )\n)\n\nplt.text(\n -0.05,\n 1.02,\n \" Box Plot: plt.boxplot(...)\\n \",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"xx-large\",\n transform=axes.transAxes,\n)\n\nplt.text(\n -0.04,\n 0.98,\n \"\\n Make a box and whisker plot \",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"large\",\n transform=axes.transAxes,\n)\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Display the contours of a function\n\nAn example demoing how to plot the contours of a function, with\nadditional layout tweaks.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\n\ndef f(x, y):\n return (1 - x / 2 + x**5 + y**3) * np.exp(-(x**2) - y**2)\n\n\nn = 256\nx = np.linspace(-3, 3, n)\ny = np.linspace(-3, 3, n)\nX, Y = np.meshgrid(x, y)\n\nplt.contourf(X, Y, f(X, Y), 8, alpha=0.75, cmap=\"hot\")\nC = plt.contour(X, Y, f(X, Y), 8, colors=\"black\", linewidth=0.5)\nplt.clabel(C, inline=1, fontsize=10)\nplt.xticks([])\nplt.yticks([])\n\n\n# Add a title and a box around it\nfrom matplotlib.patches import FancyBboxPatch\n\nax = plt.gca()\nax.add_patch(\n FancyBboxPatch(\n (-0.05, 0.87),\n width=0.66,\n height=0.165,\n clip_on=False,\n boxstyle=\"square,pad=0\",\n zorder=3,\n facecolor=\"white\",\n alpha=1.0,\n transform=plt.gca().transAxes,\n )\n)\n\nplt.text(\n -0.05,\n 1.02,\n \" Contour Plot: plt.contour(..)\\n\",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"xx-large\",\n transform=plt.gca().transAxes,\n)\n\nplt.text(\n -0.05,\n 1.01,\n \"\\n\\n Draw contour lines and filled contours \",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"large\",\n transform=plt.gca().transAxes,\n)\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Grid elaborate\n\nAn example displaying a grid on the axes and tweaking the layout.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\nfrom matplotlib.ticker import MultipleLocator\n\nfig = plt.figure(figsize=(8, 6), dpi=72, facecolor=\"white\")\naxes = plt.subplot(111)\naxes.set_xlim(0, 4)\naxes.set_ylim(0, 3)\n\naxes.xaxis.set_major_locator(MultipleLocator(1.0))\naxes.xaxis.set_minor_locator(MultipleLocator(0.1))\naxes.yaxis.set_major_locator(MultipleLocator(1.0))\naxes.yaxis.set_minor_locator(MultipleLocator(0.1))\naxes.grid(which=\"major\", axis=\"x\", linewidth=0.75, linestyle=\"-\", color=\"0.75\")\naxes.grid(which=\"minor\", axis=\"x\", linewidth=0.25, linestyle=\"-\", color=\"0.75\")\naxes.grid(which=\"major\", axis=\"y\", linewidth=0.75, linestyle=\"-\", color=\"0.75\")\naxes.grid(which=\"minor\", axis=\"y\", linewidth=0.25, linestyle=\"-\", color=\"0.75\")\naxes.set_xticklabels([])\naxes.set_yticklabels([])\n\n\n# Add a title and a box around it\nfrom matplotlib.patches import FancyBboxPatch\n\nax = plt.gca()\nax.add_patch(\n FancyBboxPatch(\n (-0.05, 0.87),\n width=0.66,\n height=0.165,\n clip_on=False,\n boxstyle=\"square,pad=0\",\n zorder=3,\n facecolor=\"white\",\n alpha=1.0,\n transform=plt.gca().transAxes,\n )\n)\n\nplt.text(\n -0.05,\n 1.02,\n \" Grid: plt.grid(...)\\n\",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"xx-large\",\n transform=axes.transAxes,\n)\n\nplt.text(\n -0.05,\n 1.01,\n \"\\n\\n Draw ticks and grid \",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"large\",\n transform=axes.transAxes,\n)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Imshow demo\n\nDemoing imshow\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\n\ndef f(x, y):\n return (1 - x / 2 + x**5 + y**3) * np.exp(-(x**2) - y**2)\n\n\nn = 10\nx = np.linspace(-3, 3, 8 * n)\ny = np.linspace(-3, 3, 6 * n)\nX, Y = np.meshgrid(x, y)\nZ = f(X, Y)\nplt.imshow(Z, interpolation=\"nearest\", cmap=\"bone\", origin=\"lower\")\nplt.xticks([])\nplt.yticks([])\n\n\n# Add a title and a box around it\nfrom matplotlib.patches import FancyBboxPatch\n\nax = plt.gca()\nax.add_patch(\n FancyBboxPatch(\n (-0.05, 0.87),\n width=0.66,\n height=0.165,\n clip_on=False,\n boxstyle=\"square,pad=0\",\n zorder=3,\n facecolor=\"white\",\n alpha=1.0,\n transform=plt.gca().transAxes,\n )\n)\n\nplt.text(\n -0.05,\n 1.02,\n \" Imshow: plt.imshow(...)\\n\",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"xx-large\",\n transform=plt.gca().transAxes,\n)\n\nplt.text(\n -0.05,\n 1.01,\n \"\\n\\n Display an image to current axes \",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n family=\"DejaVu Sans\",\n size=\"large\",\n transform=plt.gca().transAxes,\n)\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Multiple plots vignette\n\nDemo multiple plots and style the figure.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n\nax = plt.subplot(2, 1, 1)\nax.set_xticklabels([])\nax.set_yticklabels([])\n\n\n# Add a title and a box around it\nfrom matplotlib.patches import FancyBboxPatch\n\nax = plt.gca()\nax.add_patch(\n FancyBboxPatch(\n (-0.05, 0.72),\n width=0.66,\n height=0.34,\n clip_on=False,\n boxstyle=\"square,pad=0\",\n zorder=3,\n facecolor=\"white\",\n alpha=1.0,\n transform=plt.gca().transAxes,\n )\n)\n\nplt.text(\n -0.05,\n 1.02,\n \" Multiplot: plt.subplot(...)\\n\",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"xx-large\",\n transform=ax.transAxes,\n)\nplt.text(\n -0.05,\n 1.01,\n \"\\n\\n Plot several plots at once \",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"large\",\n transform=ax.transAxes,\n)\n\nax = plt.subplot(2, 2, 3)\nax.set_xticklabels([])\nax.set_yticklabels([])\n\nax = plt.subplot(2, 2, 4)\nax.set_xticklabels([])\nax.set_yticklabels([])\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Pie chart vignette\n\nDemo pie chart with matplotlib and style the figure.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nn = 20\nX = np.ones(n)\nX[-1] *= 2\nplt.pie(X, explode=X * 0.05, colors=[f\"{i / float(n):f}\" for i in range(n)])\n\nfig = plt.gcf()\nw, h = fig.get_figwidth(), fig.get_figheight()\nr = h / float(w)\n\nplt.xlim(-1.5, 1.5)\nplt.ylim(-1.5 * r, 1.5 * r)\nplt.xticks([])\nplt.yticks([])\n\n\n# Add a title and a box around it\nfrom matplotlib.patches import FancyBboxPatch\n\nax = plt.gca()\nax.add_patch(\n FancyBboxPatch(\n (-0.05, 0.87),\n width=0.66,\n height=0.165,\n clip_on=False,\n boxstyle=\"square,pad=0\",\n zorder=3,\n facecolor=\"white\",\n alpha=1.0,\n transform=plt.gca().transAxes,\n )\n)\n\nplt.text(\n -0.05,\n 1.02,\n \" Pie Chart: plt.pie(...)\\n\",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"xx-large\",\n transform=plt.gca().transAxes,\n)\n\nplt.text(\n -0.05,\n 1.01,\n \"\\n\\n Make a pie chart of an array \",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"large\",\n transform=plt.gca().transAxes,\n)\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# 3D plotting vignette\n\nDemo 3D plotting with matplotlib and decorate the figure.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\nfrom mpl_toolkits.mplot3d import Axes3D\n\nx = np.arange(-4, 4, 0.25)\ny = np.arange(-4, 4, 0.25)\nX, Y = np.meshgrid(x, y)\nR = np.sqrt(X**2 + Y**2)\nZ = np.sin(R)\n\nfig = plt.figure()\nax: Axes3D = fig.add_subplot(111, projection=\"3d\")\n\nax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=\"hot\")\nax.contourf(X, Y, Z, zdir=\"z\", offset=-2, cmap=\"hot\")\n\nax.set_zlim(-2, 2)\nplt.xticks([])\nplt.yticks([])\nax.set_zticks([])\n\nax.text2D(\n 0.05,\n 0.93,\n \" 3D plots \\n\",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"xx-large\",\n bbox={\"facecolor\": \"white\", \"alpha\": 1.0},\n transform=plt.gca().transAxes,\n)\n\nax.text2D(\n 0.05,\n 0.87,\n \" Plot 2D or 3D data\",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"large\",\n transform=plt.gca().transAxes,\n)\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Plot example vignette\n\nAn example of plots with matplotlib, and added annotations.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nn = 256\nX = np.linspace(0, 2, n)\nY = np.sin(2 * np.pi * X)\n\nplt.plot(X, Y, lw=2, color=\"violet\")\nplt.xlim(-0.2, 2.2)\nplt.xticks([])\nplt.ylim(-1.2, 1.2)\nplt.yticks([])\n\n\n# Add a title and a box around it\nfrom matplotlib.patches import FancyBboxPatch\n\nax = plt.gca()\nax.add_patch(\n FancyBboxPatch(\n (-0.05, 0.87),\n width=0.66,\n height=0.165,\n clip_on=False,\n boxstyle=\"square,pad=0\",\n zorder=3,\n facecolor=\"white\",\n alpha=1.0,\n transform=plt.gca().transAxes,\n )\n)\n\nplt.text(\n -0.05,\n 1.02,\n \" Regular Plot: plt.plot(...)\\n\",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"xx-large\",\n transform=plt.gca().transAxes,\n)\n\nplt.text(\n -0.05,\n 1.01,\n \"\\n\\n Plot lines and/or markers \",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"large\",\n transform=plt.gca().transAxes,\n)\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Plotting in polar, decorated\n\nAn example showing how to plot in polar coordinate, and some\ndecorations.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\n\nimport matplotlib\nimport matplotlib.pyplot as plt\n\n\nplt.subplot(1, 1, 1, polar=True)\n\nN = 20\ntheta = np.arange(0.0, 2 * np.pi, 2 * np.pi / N)\nrng = np.random.default_rng()\nradii = 10 * rng.random(N)\nwidth = np.pi / 4 * rng.random(N)\nbars = plt.bar(theta, radii, width=width, bottom=0.0)\njet = matplotlib.colormaps[\"jet\"]\n\nfor r, bar in zip(radii, bars, strict=True):\n bar.set_facecolor(jet(r / 10.0))\n bar.set_alpha(0.5)\nplt.gca().set_xticklabels([])\nplt.gca().set_yticklabels([])\n\n\nplt.text(\n -0.2,\n 1.02,\n \" Polar Axis \\n\",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"xx-large\",\n bbox={\"facecolor\": \"white\", \"alpha\": 1.0},\n transform=plt.gca().transAxes,\n)\n\nplt.text(\n -0.2,\n 1.01,\n \"\\n\\n Plot anything using polar axis \",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"large\",\n transform=plt.gca().transAxes,\n)\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Plotting quiver decorated\n\nAn example showing quiver with decorations.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nn = 8\nX, Y = np.mgrid[0:n, 0:n]\nT = np.arctan2(Y - n / 2.0, X - n / 2.0)\nR = 10 + np.sqrt((Y - n / 2.0) ** 2 + (X - n / 2.0) ** 2)\nU, V = R * np.cos(T), R * np.sin(T)\n\nplt.quiver(X, Y, U, V, R, alpha=0.5)\nplt.quiver(X, Y, U, V, edgecolor=\"k\", facecolor=\"None\", linewidth=0.5)\n\nplt.xlim(-1, n)\nplt.xticks([])\nplt.ylim(-1, n)\nplt.yticks([])\n\n\n# Add a title and a box around it\nfrom matplotlib.patches import FancyBboxPatch\n\nax = plt.gca()\nax.add_patch(\n FancyBboxPatch(\n (-0.05, 0.87),\n width=0.66,\n height=0.165,\n clip_on=False,\n boxstyle=\"square,pad=0\",\n zorder=3,\n facecolor=\"white\",\n alpha=1.0,\n transform=plt.gca().transAxes,\n )\n)\n\nplt.text(\n -0.05,\n 1.02,\n \" Quiver Plot: plt.quiver(...)\\n\",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"xx-large\",\n transform=plt.gca().transAxes,\n)\n\nplt.text(\n -0.05,\n 1.01,\n \"\\n\\n Plot a 2-D field of arrows \",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"large\",\n transform=plt.gca().transAxes,\n)\n\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Plot scatter decorated\n\nAn example showing the scatter function, with decorations.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nn = 1024\nrng = np.random.default_rng()\nX = rng.normal(0, 1, n)\nY = rng.normal(0, 1, n)\n\nT = np.arctan2(Y, X)\n\nplt.scatter(X, Y, s=75, c=T, alpha=0.5)\nplt.xlim(-1.5, 1.5)\nplt.xticks([])\nplt.ylim(-1.5, 1.5)\nplt.yticks([])\n\n\n# Add a title and a box around it\nfrom matplotlib.patches import FancyBboxPatch\n\nax = plt.gca()\nax.add_patch(\n FancyBboxPatch(\n (-0.05, 0.87),\n width=0.66,\n height=0.165,\n clip_on=False,\n boxstyle=\"square,pad=0\",\n zorder=3,\n facecolor=\"white\",\n alpha=1.0,\n transform=plt.gca().transAxes,\n )\n)\n\nplt.text(\n -0.05,\n 1.02,\n \" Scatter Plot: plt.scatter(...)\\n\",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"xx-large\",\n transform=plt.gca().transAxes,\n)\n\nplt.text(\n -0.05,\n 1.01,\n \"\\n\\n Make a scatter plot of x versus y \",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"large\",\n transform=plt.gca().transAxes,\n)\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@@ -0,0 +1,43 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Text printing decorated\n\nAn example showing text printing and decorating the resulting figure.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\nimport matplotlib.pyplot as plt\n\nfig = plt.figure()\nplt.xticks([])\nplt.yticks([])\n\neqs = []\neqs.append(\n r\"$W^{3\\beta}_{\\delta_1 \\rho_1 \\sigma_2} = U^{3\\beta}_{\\delta_1 \\rho_1} + \\frac{1}{8 \\pi 2} \\int^{\\alpha_2}_{\\alpha_2} d \\alpha^\\prime_2 \\left[\\frac{ U^{2\\beta}_{\\delta_1 \\rho_1} - \\alpha^\\prime_2U^{1\\beta}_{\\rho_1 \\sigma_2} }{U^{0\\beta}_{\\rho_1 \\sigma_2}}\\right]$\"\n)\neqs.append(\n r\"$\\frac{d\\rho}{d t} + \\rho \\vec{v}\\cdot\\nabla\\vec{v} = -\\nabla p + \\mu\\nabla^2 \\vec{v} + \\rho \\vec{g}$\"\n)\neqs.append(r\"$\\int_{-\\infty}^\\infty e^{-x^2}dx=\\sqrt{\\pi}$\")\neqs.append(r\"$E = mc^2 = \\sqrt{{m_0}^2c^4 + p^2c^2}$\")\neqs.append(r\"$F_G = G\\frac{m_1m_2}{r^2}$\")\n\nrng = np.random.default_rng()\n\nfor i in range(24):\n index = rng.integers(0, len(eqs))\n eq = eqs[index]\n size = rng.uniform(12, 32)\n x, y = rng.uniform(0, 1, 2)\n alpha = rng.uniform(0.25, 0.75)\n plt.text(\n x,\n y,\n eq,\n ha=\"center\",\n va=\"center\",\n color=\"#11557c\",\n alpha=alpha,\n transform=plt.gca().transAxes,\n fontsize=size,\n clip_on=True,\n )\n\n\n# Add a title and a box around it\nfrom matplotlib.patches import FancyBboxPatch\n\nax = plt.gca()\nax.add_patch(\n FancyBboxPatch(\n (-0.05, 0.87),\n width=0.66,\n height=0.165,\n clip_on=False,\n boxstyle=\"square,pad=0\",\n zorder=3,\n facecolor=\"white\",\n alpha=1.0,\n transform=plt.gca().transAxes,\n )\n)\n\nplt.text(\n -0.05,\n 1.02,\n \" Text: plt.text(...)\\n\",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"xx-large\",\n transform=plt.gca().transAxes,\n)\n\nplt.text(\n -0.05,\n 1.01,\n \"\\n\\n Draw any kind of text \",\n horizontalalignment=\"left\",\n verticalalignment=\"top\",\n size=\"large\",\n transform=plt.gca().transAxes,\n)\n\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}