{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "# 1D plotting\n", "\n", "Plot a basic 1D figure\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGdCAYAAABO2DpVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOWRJREFUeJzt3Xl8VOW9x/HvmayEZAJhCQkECIqEsAZxQ7FWLCJoxAUUUFxuvbWyilXBuhRbDS7FDaRavV6tgqCgTd0q1wWk0SoSNiNLQcKSsENWss2c+8dEdDIBskzmzPJ5v17z6mtOfmN+nh6Yr89zzvMYpmmaAgAA8AKb1Q0AAIDgQbAAAABeQ7AAAABeQ7AAAABeQ7AAAABeQ7AAAABeQ7AAAABeQ7AAAABeE+7rX+h0OlVQUKC4uDgZhuHrXw8AAJrANE2VlJQoOTlZNtuJxyV8HiwKCgqUkpLi618LAAC8YNeuXerSpcsJf+7zYBEXFyfJ1Zjdbvf1rwcAAE1QXFyslJSU49/jJ+LzYPHj9IfdbidYAAAQYE51GwM3bwIAAK8hWAAAAK8hWAAAAK8hWAAAAK8hWAAAAK8hWAAAAK8hWAAAAK8hWAAAAK/x+QJZAACgBTgdUn6OVLpPik2Uug2RbGE+b4NgAQBAoMvLlj66Vyou+OmYPVka8ZiUnunTVpgKAQAgkOVlS0smuocKSSoudB3Py/ZpOwQLAAACldPhGqmQWc8Pa499NNNV5yMECwAAAlV+judIhRtTKt7jqvMRggUAAIGqdJ9367yAYAEAQKCKTfRunRcQLAAACECmaeqV3UkqNBPkrO8WC0mSIdk7ux499RGCBQAAAeZoeZX++2/favb7m/WH6okyDMmUUaeq9v2IOT5dz4JgAQBAAFmz84hGPbtKy/P2KTLMpiGX3yKNfU2GPcm90J4sjX3N5+tYsEAWAAABwOk09dKq7Xr8o82qcZrq1i5G88cPUt/O8ZK6S2mXs/ImAAA4tcNlVfrdW+v06ab9kqTL+ycp6+p+iouO+KnIFialDrWow58QLAAA8GPf7DisqYtyVVhUochwmx66Il3jz+4qw6h7T4V/IFgAAOCHnE5TC1Zs09zlW+RwmurRvrXmjR+k9GS71a2dFMECAAA/c7C0UncuXqsvth6UJI0emKw/XdVPsVH+/7Xt/x0CABBCvtx2SNPezNX+kkpFR9j0cGZfjRncxW+nPuoiWAAA4AccTlPzPv2Pnvlki5ymdHrHWD0/YZDOSIyzurVGIVgAAGCx/SUVmv7mWuVsOyRJGnNmF82+so9iIgPvazrwOgYAIBA5HfWuM7Fq60FNX5yrg6VVahURpkeu6qurB3WxutsmI1gAANDS8rKlj+512+LcjEtWdtI0Td+QItOU0jrFad74QTq9Y6yFjTYfwQIAgJaUly0tmSjJfacws6RAVxTfqw+M6Uo46xo9dEUfRUf4fqVMbyNYAADQUpwO10iFPLcftUlySnoq/k3FjH7QkuW3WwKbkAEA0FLyc9ymP+qyGVLMsb2uuiBBsAAAoKWU7vNuXQAgWAAA0FJiE71bFwAIFgAAtICqGqce2dhGBWaCnJ63WNQyJHtn16OnQYJgAQCAl+06XK4xL3ypv/5rp2ZXT5RhSKbqLsld+37EnKC5cVMiWAAA4FUfbSzUyGe/0LpdR2WPDtfVE34rY+zfZNiT3AvtydLY16T0TGsabSE8bgoAgBdU1jj06Pvf69Uv8yVJGV3b6LlxGerSNkZSppQ2qt6VN4MNwQIAgGbacbBMkxet0cY9xZKk/76wh+6+tJciwn42MWALk1KHWtSh7xAsAABohvfWF2jm0g0qraxR25gI/XnsAF2cFjxPeTQWwQIAgCaoqHboj+/l6Y1/75QkDe7WVs+Nz1BSfCuLO7MWwQIAgEbadqBUk95Yo017SyRJd1x0mmb86gyFh/FMBMECAIBGeDd3j+57Z4PKqxxq1zpSc68bqF+c0cHqtvwGwQIAgAY4VuXQH7K/0+LVuyRJ5/ZI0DPXZyjRHm1xZ/6FYAEAwCls3VeiSQvXaMu+UhmGNOXinpo2rKfCbHUXvQLBAgCAHzkdHmtNvLWmQA/+/Tsdq3aofWyUnrl+oM4/vb3VnfotggUAAJKUly19dK/bNudHwzvo/8on6JjzbJ1/ejs9dd1AdYxj6uNkCBYAAORlS0smSnLfLcxefUALIp7WR+mP69IxI5n6aIBGPRdTU1Oj+++/X6mpqWrVqpV69Oihhx9+WE6ns6X6AwCgZTkdrpEKeW5BajMkwzA0cs8zChPfdQ3RqBGLxx57TH/5y1/06quvqk+fPlq9erVuueUWxcfHa9q0aS3VIwAALSc/x236oy5DplS8x1UXAktyN1ejgsWXX36pK6+8UqNGjZIkde/eXYsWLdLq1atbpDkAAFpc6T7v1oW4Rk2FXHDBBfrkk0+0ZcsWSdK6deu0atUqjRw58oSfqaysVHFxsdsLAAB/YJqmPt7pOQVSr9jQ3f+jMRo1YnHvvfeqqKhIaWlpCgsLk8Ph0COPPKJx48ad8DNZWVmaPXt2sxsFAMCbiiuqNXPpen20IVqrohLUyTh8gv/aNiR7smubc5xSo0YsFi9erNdff10LFy7UmjVr9Oqrr+rJJ5/Uq6++esLPzJo1S0VFRcdfu3btanbTAAA0x/rdR3X5s6v0wYa9stnClNf/PhkyJNV96qP2/Yg5rm3PcUqNGrG4++67NXPmTF1//fWSpH79+ik/P19ZWVm66aab6v1MVFSUoqKimt8pAADNZJqmXvnXDmV9+L2qHaY6t2mleeMzlNG1rdQ70WMdC9mTXaEiPdO6pgNMo4JFeXm5bDb3QY6wsDAeNwUA+L2i8mrd/fY6fZznuglzeHqinrh2gOJjIlwF6ZlS2iiPlTcZqWicRgWLK664Qo888oi6du2qPn36KDc3V3PnztWtt97aUv0BANBsa3Ye0ZSFudpz9Jgiw2y6b2SabhrSXYZRZ+rDFsYjpc1kmKbZwNthpZKSEj3wwAN65513tH//fiUnJ2vcuHF68MEHFRkZ2aB/RnFxseLj41VUVCS73d7kxgEAOBWn09RLq7br8Y82q8ZpqmtCjOaPH6R+XeKtbi3gNPT7u1HBwhsIFgAAXzhSVqW73lqnTzftlySN6pekrGv6yR4dYXFngamh39/sFQIACDrf7DisqYtyVVhUochwmx68PF0TzunqOfUBryNYAACChtNpasGKbZq7fIscTlOp7Vtr3vgM9Ulm6sNXCBYAgKBwsLRSM5as08otByRJVw5M1iNX9VNsFF91vsTZBgAEvK+2H9LURbnaX1KpqHCbHr6yj8YOTmHqwwIECwBA4HA63NaZcKScp3mf/6BnPtkipymd3jFW88cPUq9OcVZ3GrIIFgCAwJCX7bEy5tGw9so7doOc5tm6ZlAX/XF0H8VE8tVmJc4+AMD/5WVLSyZKcl8hoW3NQS2IeFpfnfW0hlw+ypre4KZRm5ABAOBzTodrpEKeyy7ZDMkwDA3Z8oSrDpYjWAAA/Ft+jvvGYHUYMqXiPa46WI5gAQDwb6X7vFuHFkWwAAD4rWqHUwvzKhtWHJvYss2gQbh5EwDglwqOHtOURbnKzbfroqgEJRmHVf+qFIZkT3ZtcQ7LMWIBAPA7n3y/TyOf/ULf5h9R66hIFZz7kAwZkke0qH0/Yo5ry3NYjhELAIDfqKpx6vGPNumlVT9Ikvp1jte88Rnq1q611C3BYx0L2ZNdoSI906KOURfBAgDgF3YdLteURblau+uoJOnmId01a2SaosJrRyLSM6W0UW4rb6rbEEYq/AzBAgBguX9+t1d3v7VOxRU1skeH64kxA3Rpn06ehbYwKXWo7xtEgxEsAACWqaxxKOuDTfrfnB2SpIEpbfTcuAylJMRY2xiajGABALBE/qEyTV6Yqw17iiRJtw1N1d2XpikynOcKAhnBAgDgc++vL9TMpetVUlmjNjER+vOYARrWm3UoggHBAgDgMxXVDv3p/Ty9/tVOSdLgbm317LgMJbdpZXFn8BaCBQDAJ344WKY73lij7wuLJUl3XHSa7vzVGYoIY+ojmBAsAADe43TU+zjo39fu0X3LNqisyqGE1pF66rqB+sUZHazuFi2AYAEA8I68bI8FrMy4ZL3e9g49sKWHJOmc1AQ9Oy5DifZoq7pECyNYAACaLy9bWjJRkul22Cwp0ITi+/WvsOk64xfjNXVYT4Uz9RHUCBYAgOZxOlwjFXVCheTakMppSE/HL1b0JQ9KNkJFsOP/YQBA8+TnuO/fUYdNUnR5oasOQY9gAQBontJ93q1DQCNYAACaxYzt2LDCWBbACgUECwBAk5VW1mjGVzEqMBPk9LzFopYh2Tu7Hj1F0CNYAACaJK+gWJnPrdI76/bpjzU3yTAkU0adqtr3I+awvXmIIFgAABrFNE29/lW+Rj//L20/WKak+Gj9121TZYz9mwx7knuxPVka+5qUnmlNs/A5HjcFADRYcUW1Zi3boPfXF0qShqV11JNjBqht60hJmVLaqHpX3kToIFgAABpkw+4iTV60RvmHyhVuM3TviDT9emiqDONn0x+2MCl1qHVNwnIECwDASZmmqVdzdujRDzapyuFU5zat9Nz4DA3q2tbq1uCHCBYAgBMqKq/WPUvX6Z/fudagGJ6eqCeuHaD4mAiLO4O/IlgAAOq1dtdRTV64RruPHFNEmKH7RvbWzUO6u099AHUQLAAAbkzT1MurftCcDzepxmmqa0KM5o3PUP8ubaxuDQGAYAEAOO5IWZV+99Y6fbJpvyRpZL9OmnNNf9mjmfpAwxAsAACSpG/zD2vKwlwVFFUoMtymBy5P1w3ndGXqA41CsACAUOJ0eKwz4ZRNL6zcric/3iyH01Rq+9aaNz5DfZLjre4WAYhgAQChIi9b+uhety3OHbHJmh/9a83dnSZJunJgsh65qp9io/h6QNNw5QBAKMjLlpZMlOS+U5hRWqDJJQ9rS8QMXXDFLbrurBSmPtAs7BUCAMHO6XCNVMhz+1GbJBnSU/Y3df3gzoQKNBvBAgCCXX6O2/RHXTZJEWUFrjqgmQgWABDsSvd5tw44CYIFAAQ5R+uODSuMTWzZRhASCBYAEMT2FVfohuU2FZgJcnreYlHLkOydXVucA81EsACAILViywGNfOYLfflDkR4zb669MbPuzZm170fMcW15DjQTj5sCQJCpcTg1d/kWPf/5NklS7yS7po2/S8aBDI91LGRPdoWK9EyLukWwIVgAQBApLDqmqYty9c2OI5KkG87tqvtHpSs6IkzqkCmljfJYeZORCngTwQIAgsSnm/bpriXrdKS8WrFR4ZpzTT9d3j/ZvcgWJqUOtaZBhASCBQAEuGqHU0/8c7NeXLldktSvc7zmjc9Qt3atLe4MoYhgAQABbPeRck1ZlKvcnUclSTcP6a5ZI9MUFc70BqxBsACAAPXxd3v1u7fWqbiiRvbocD1+7QCN6NvJ6rYQ4ggWABBgqmqcyvrwe73yrx2SpAEpbTRvXIZSEmKsbQwQwQIAAsrOQ+WavGiN1u8ukiTdNjRVd1+apshwliWCfyBYAECA+GBDoe59e71KKmvUJiZCT147QJeksww3/AvBAgD8jdPhttZERfI5euTDLfrbV/mSpDO7tdWz4zLUuU0rixsFPBEsAMCf5GV7rI5ZYrTX/sobJJ2t3150mmb86gxFhDH1Af9EsAAAf5GXLS2ZKMl9t7B2zoNaEPm08i6Yp76XjLKmN6CBiLwA4A+cDtdIhTy3ILUZkiFDfddnueoAP0awAAB/kJ/jvjlYHYZMqXiPqw7wYwQLAPAHpfu8WwdYpNHBYs+ePbrhhhvUrl07xcTEaODAgfr2229bojcACAnlVTVa8G1pw4pjebwU/q1RN28eOXJE559/vn75y1/qww8/VMeOHbVt2za1adOmhdoDgOC2ZV+JJr2xRtv2t9PoqAR1Mg7LqLfSkOzJrm3OAT/WqGDx2GOPKSUlRa+88srxY927d/d2TwAQ9EzT1Furd+vB7I2qqHaqY1wrFQ/5k5JWTPqx4mfVtVFjxBzXtueAH2vUVEh2drYGDx6sMWPGqGPHjsrIyNBf//rXk36msrJSxcXFbi8ACGVllTW6c/Fa3bN0vSqqnRras70+mDZUvX45QRr7mmRPcv+APdl1PD3TmoaBRjBM0/R8tukEoqOjJUkzZszQmDFj9PXXX2v69Ol64YUXNHHixHo/84c//EGzZ8/2OF5UVCS73d7EtgEgMOUVFGvywjXafrBMYTZDdw0/Q7dfeJpstp9NgNRZeVPdhjBSAcsVFxcrPj7+lN/fjQoWkZGRGjx4sHJyfnrcaerUqfrmm2/05Zdf1vuZyspKVVZWujWWkpJCsAAQUkzT1MKvd2r2P/JUVeNUUny0nh2XobO6J1jdGtAgDQ0WjbrHIikpSenp6W7HevfuraVLl57wM1FRUYqKimrMrwGAoFJSUa2Zyzbo/fWFkqSL0zrqyTEDlNA60uLOAO9rVLA4//zztXnzZrdjW7ZsUbdu3bzaFAAEi417ijRp4RrlHypXuM3QvSPS9F8XpLpPfQBBpFHB4s4779SQIUP06KOPauzYsfr666/14osv6sUXX2yp/gAgIJmmqVdzdujRDzapyuFU5zat9Nz4DA3q2tbq1oAW1ah7LCTpvffe06xZs7R161alpqZqxowZuu222xr8+YbO0QBAoCo6Vq17316vj77bK0kanp6oJ64doPiYCIs7A5quRW7e9AaCBYBgtnbXUU1euEa7jxxTRJih+0b21s1DusswmPpAYGuRmzcBAKr3cVDTsOnlVT9ozoebVOM01TUhRvPGZ6h/lzZWdwv4FMECABojL9u1vfnPdiJ1xiXrL61u0+M7e0mSRvbrpDnX9Jc9mqkPhB6CBQA0VF62tGSi3JfbllRSoNuLZysvYobOGXWzbjinK1MfCFlsmw4ADeF0uEYq6oYK1f5Fakhz7Yt049ldCBUIaQQLAGiI/By36Y+6bJIiywpddUAII1gAQEOU7vNuHRCkCBYA0ACO1h0bVhib2LKNAH6OYAEAp3CgpFI3fxKuAjNBzhOu/GNI9s6unUiBEEawAICTyPnPQV32zBf6YtsRzXHeXHtjZt2bM2vfj5jD9uYIeTxuCgD1cDhNPfPJVj336VaZpnRGYqymjJ8h41CGxzoWsie7QkV6pnUNA36CYAEAdewrrtC0N3P11fbDkqTrz0rRQ1f0UavIMCkxU0ob5bHyJiMVgAvBAgB+ZuWWA7pz8VodKqtS68gwPXp1P105sLN7kS1MSh1qTYOAnyNYAICkGodTc5dv0fOfb5Mk9U6ya/74DPXoEGtxZ0BgIVgACHmFRcc0dVGuvtlxRJI04ZyueuDydEVHML0BNBbBAkBI+2zTfs1YslZHyqsVGxWuOdf00+X9k61uCwhYBAsAIana4dST/9ysF1ZulyT17WzX/PGD1K1da4s7AwIbwQJAyNl9pFxTFuUqd+dRSdLNQ7pr1sg0RYUz9QE0F8ECQEj5+Lu9uvvt9So6Vq246HA9cW1/jeibZHVbQNAgWAAIPk6HxzoTVU5DWR9+r1f+tUOSNCCljeaNy1BKQoy1vQJBhmABILjkZXusjFkTm6Q/G7folQN9JUm/viBV94xIU2Q4uxoA3kawABA88rKlJRMlue8UZisp1L16VAeif6eRY/9bl6SzAynQUojrAIKD0+EaqZDn9qO22n3DHo9dqEvS2vu8NSCUECwABIf8HPeNweqwSQovLXDVAWgxBAsAwaF0n3frADQJwQJAUKhq1aFhhbHcXwG0JIIFgID3n/2lGv0PpwrMBDk9b7GoZUj2zq4tzgG0GIIFgIC2bM1uZc5bpbx95Xoq7FYZRu2dmm5q34+Y49ryHECL4XFTAAGpvKpGD/39O7317W5J0pDT2unu6+6WsXuAxzoWsie7QkV6pkXdAqGDYAEg4GzZV6JJb6zR1v2lshnStGFnaPLFpyvMZrjCQ9ooj5U3GakAfINgASBgmKapt77drQf/vlEV1U51jIvSM9dn6LzT2rkX2sKk1KHWNAmEOIIFgIBQVlmj+9/dqHdy90iShvZsr6euG6j2sVEWdwbg5wgWAPze94XFmvTGGm0/WKYwm6EZvzpDv/3FabLZ6t6kCcBqBAsAfss0TS38eqdm/yNPVTVOdbJH67nxGTqre4LVrQE4AYIFAL9UUlGtWcs26L31hZKkX/bqoD+PHaiE1pEWdwbgZAgWAPzOxj1FmrxwjXYcKle4zdA9I3rp1xf0YOoDCAAECwB+wzRNvfZlvh55/3tVOZzq3KaVnh2XoTO7tbW6NQANRLAA4HtOh8c6E0WVTs1cul4fbtwrSbqkd6KeHNNfbWKY+gACCcECgG/lZXusjFnVOkmPV9+oD4sHKiLM0KzLeuuW87vXLs8NIJAQLAD4Tl62tGSiJPedwsJLC/VHPS7Z79HYGydpQEobS9oD0HxsQgbAN5wO10iFPLcftRmSYUh/jHpDAzrH+b43AF5DsADgG/k57huD1WFIspXscdUBCFgECwC+UbrPu3UA/BLBAoBPFIe3O3WR5HpKBEDAIlgAaHFf/3BYI5ZVq8BMkNPzFotahmTv7NriHEDAIlgAaDFOp6l5n27V9S9+qYKSar3Q6r9rHyGt+xhp7fsRc1xbngMIWDxuCqBFHCip1Iwla/XF1oOSpKszOuue0ZfK2NbHYx0L2ZNdoSI906JuAXgLwQKA1+VsO6hpb67VgZJKRUfY9Mcr+2rM4BTXD9MzpbRRHitvMlIBBAeCBQCvcThNPffpVj37yVY5TemMxFjNHz9IPRPrrE1hC5NSh1rTJIAWRbAA4BX7iys07c21+nL7IUnS2MFdNDuzr1pFMhIBhBKCBYBm+2LrAd25eK0OllYpJjJMj1zVV1dldLG6LQAWIFgAaLIah1NP/99Wzf/8PzJNKa1TnOZPGKTTOsRa3RoAixAsADRJYdExTVu0Vl/vOCxJmnBOVz1webqiI5j6AEIZwQJAo322eb9mLF6rI+XVio0KV9bV/XTFgGSr2wLgBwgWAOrndHg8ElptGnry4816YcV2SVLfznbNGzdI3du3trhZAP6CYAHAU162xyJWNbFJmmu7VS/s7yNJunlId80amaaocKY+APyEYAHAXV62tGSiJPdNPWylhbrbfESF0XdpxLW3aUTfJGv6A+DX2CsEwE+cDtdIhTx3CrNJkiE9GbtII9I7+rozAAGCYAHgJ/k57nt41GGTFF5a4KoDgHoQLAD8pHSfd+sAhByCBYDjqlp1aFhhbGLLNgIgYBEsAEiSdhws07UfmCowE+T0vMWiliHZO7t2IwWAehAsAOgf6wp0+XOrtL6gTHPDbpVhGJKMOlW170fMYYtzACfE46ZACKuodujh9/K08N87JUlnd0/Q78bdLWPPAI91LGRPdoWK9EyLugUQCAgWQIjadqBUk95Yo017S2QY0uRfnq5pw3oqPMwmxWdKaaM8Vt5kpALAqTRrKiQrK0uGYWj69OleageAL7yTu1tXPLdKm/aWqH1spF679WzdNbyXK1T8yBYmpQ6V+l3r+l9CBYAGaPKIxTfffKMXX3xR/fv392Y/AFrQsSqHHsreqCWrd0uSzuvRTs9cP1Ad7dEWdwYgWDRpxKK0tFQTJkzQX//6V7Vt29bbPQFoAVv3lShz3iotWb1bhiFNv6SnXv/1OYQKAF7VpGAxadIkjRo1SpdccskpaysrK1VcXOz2AuA7pmlqyepdumLeKm3dX6oOcVF649fnaPolZyjMVvfJDwBonkZPhbz55ptas2aNvvnmmwbVZ2Vlafbs2Y1uDEDzlVXW6IF3N2pZ7h5J0tCe7fXUdQPVPjbK4s4ABKtGjVjs2rVL06ZN0+uvv67o6IYNn86aNUtFRUXHX7t27WpSowAa5/vCYmXOW6VluXtkM6S7L+2lV285m1ABoEUZpmmecI29ut59911dddVVCgv76e5wh8MhwzBks9lUWVnp9rP6FBcXKz4+XkVFRbLb7U3vHEC9TNPUoq93afY/vlNljVOd7NF6dlyGzk5NsLo1AAGsod/fjZoKGTZsmDZs2OB27JZbblFaWpruvffeU4YKAF7kdHisM1FS5dR972zUP9a5Fra6qFcHzR07UAmtIy1uFkCoaFSwiIuLU9++fd2OtW7dWu3atfM4DqAF5WV7rIxZ1TpJj9dM1D+KBijMZuieS3vptqE9ZOMGTQA+xMqbQKDJy5aWTJTkPosZXlqo2XpMNbH36Nob79CZ3XgUHIDvNeoeC2/gHgugGZwO6em+7nt4/PzHkhTXWbY7N7BSJgCvauj3N7ubAoEkP+eEoUJy/YG2lexx1QGABQgWQCAp3efdOgDwMoIFEEBKI9o1rDA2sWUbAYATIFgAAeLb/CO67J0aFZgJcp7wzihDsnd2bXEOABYgWAB+zuk09cKKbbruhS+1q6hKz0ffJsMwJNV9jLT2/Yg53LgJwDI8bgr4scNlVbpryVp9tvmAJOny/km69+rhMrb39VjHQvZkV6hIz7SoWwAgWAB+6+sfDmvqolztLa5QZLhNf7iij8adneIarUjPlNJGeay8yUgFAKsRLAA/43SaWrBim+Yu3yKH01SPDq01f/wg9U6q89y4LUxKHWpNkwBwAgQLwI8cLK3UnYvX6outByVJV2V01p9G91XrKP6oAggM/G0F+ImcbQc17c21OlBSqegImx6+sq/GnNml9kZNAAgMBAvAYg6nqec+3apnP9kqpyn17Bir+RMG6YzEOKtbA4BGI1gAFtpfXKFpb67Vl9sPSZLGnNlFs6/so5hI/mgCCEz87QVY5IutB3Tn4rU6WFqlmMgw/Wl0X109qIvVbQFAsxAsAB+rcTj19P9t1fzP/yPTlNI6xWne+EE6vWOs1a0BQLMRLICW4nR4rDNRWFKlaYvW6usdhyVJ48/pqgcvT1d0BOtPAAgOBAugJeRle6yMWdGqk56suEFfHxuk2KhwPXp1P2UOSLawSQDwPoIF4G152dKSiZLcdwqLLN+rJ/SkEtrfp/E3T1Zq+9bW9AcALYhNyABvcjpcIxXy3H7UZkiGId1ne1WpCdG+7w0AfIBgAXhTfo77xmB1GJKM4j2uOgAIQgQLwJtK93m3DgACDMEC8KL9ZpuGFcYmtmgfAGAVggXgJR9tLNSvllWrwEyQ84RVhmTv7NriHACCEMECaKbKGoce+vtG3f76GhVVOPW3+N/KcN1NUaey9v2IOa4tzwEgCPG4KdAMOw6WafKiNdq4p1iS9Jtf9NCM4ZfJ2JzmsY6F7MmuUJGeaVG3ANDyCBZAE/1jXYFmLdug0soatY2J0NyxA/XLtI6uH6ZnSmmjPFbeZKQCQLAjWACNVFHt0MPv5Wnhv3dKks7q3lbPjstQUnwr90JbmJQ61IIOAcA6BAugEbYdKNWkN9Zo094SGYZ0x0Wn6c5LzlB4GLcrAYBEsAAa7J3c3fr9OxtVXuVQu9aReuq6gbrwjA5WtwUAfoVgAZzCsSqHHsreqCWrd0uSzuvRTs9cP1Ad7SzLDQB1ESyAk9i6r0STFq7Rln2lMgxp6sU9NXVYT4XZ6j5KCgCQCBbACb21epce+PtGVVQ71SEuSs9cN1BDTm9vdVsA4NcIFghtTofHI6Fl1aYe+PtGLVuzR5I0tGd7zR07UB3ioixuFgD8H8ECoSsv22MRq+rWSXrccZOWHe0vmyHN+NUZuuOi02Vj6gMAGoRggdCUly0tmSjJdDscVlqohzRHlbH36OoJv9XZqQnW9AcAAYqH7xF6nA7XSEWdUCFJttotPh5p9YbO7hbv89YAINARLBB68nPc9/CowyYprGSPqw4A0CgEC4Se0n3erQMAHEewQMgpi2zXsMLYxJZtBACCEMECIWX97qMa+W6NCswEOT1vsahlSPbOrt1IAQCNQrBASDBNU/+z6gddsyBH+UeqNC/q1zKM2js13dS+HzGHLc4BoAl43BRBr6i8Wne/vU4f57numRjRp5PuvfYeGT/081jHQvZkV6hIz7SoWwAIbAQLBLU1O49oysJc7Tl6TJFhNt1/eW/deG4312hFeqaUNspj5U1GKgCg6QgWCEpOp6mXVm3X4x9tVo3TVLd2MZo/fpD6dq6zNoUtTEodak2TABCECBYIOkfKqnTXW+v06ab9kqTL+ycp6+p+iouOsLgzAAh+BAsElW92HNbURbkqLKpQZLhNf7iij8adnVJ7oyYAoKURLBAUnE5TC1Zs09zlW+RwmurRvrXmTxik3kl2q1sDgJBCsEDAO1haqTsXr9UXWw9Kkq7K6Kw/je6r1lFc3gDga/zNi4D25bZDmvZmrvaXVCo6wqaHM/tqzOAuTH0AgEUIFghIDqepeZ/+R898skVOU+rZMVbzJwzSGYlxVrcGACGNYAH/5nR4rDOxv6xa099cq5xthyRJY87sotlX9lFMJJczAFiNv4nhv/KyPVbGrIzppCcqblROeYZiIsP0p9F9dfWgLhY2CQD4OYIF/FNetrRkoiT3ncIiyvbqMT0he8Isjbt5sk7vGGtNfwCAerEJGfyP0+EaqZDn9qM2QzIM6f7w13R6+1a+7w0AcFIEC/if/Bz3jcHqMCQZxXtcdQAAv0KwgP8p3efdOgCAzxAs4HcOqk3DCmMTW7QPAEDjESzgV/4vb5+GL6tWgZkgp+ctFrUMyd7ZtcU5AMCvECzgF6pqnPrTe3n69WurdfiYU6/ab69dPbPuCpq170fMcW15DgDwKzxuCsvtOlyuyYtytW7XUUnSreen6q7LLpOxpbfHOhayJ7tCRXqmNc0CAE6KYAFLfbRxr+55e52KK2pkjw7Xk2MGaHifTq4fpmdKaaM8Vt5kpAIA/BfBApaorHEo64NN+t+cHZKkjK5t9Ny4DHVpG+NeaAuTUof6vkEAQJMQLOBz+YfKNHlhrjbsKZIk/ebCHvrdpb0UEcYtPwAQ6AgW8Kn31hdo5tINKq2sUduYCP157ABdnMZjowAQLAgW8ImKaof++F6e3vj3TknSWd3b6tlxGUqKZ1luAAgmjRp7zsrK0llnnaW4uDh17NhRo0eP1ubNm1uqNwSJ7QdKddXzOcdDxR0XnaZFt51LqACAINSoYLFixQpNmjRJX331lZYvX66amhoNHz5cZWVlLdUfAty7uXt0+XOr9H1hsdq1jtSrt56te0akKZz7KQAgKBmmaZ5wfcNTOXDggDp27KgVK1bowgsvbNBniouLFR8fr6KiItnt9qb+avi5Y1UO/SH7Oy1evUuSdG6PBD1zfYYS7dEWdwYAaIqGfn836x6LoiLXXf0JCQknrKmsrFRlZaVbYwgiTofHOhP/OViuSW/kavO+EhmGNPXinpo6rKfCbHVX0QQABJsmBwvTNDVjxgxdcMEF6tu37wnrsrKyNHv27Kb+GvizvGyPlTHLoxP1bNkEba4erA5xUXrmuoEacnp7C5sEAPhSk6dCJk2apPfff1+rVq1Sly5dTlhX34hFSkoKUyGBLi9bWjJRkvvl8+PGYc+2f1ATbp6sDnFRvu8NAOB1LToVMmXKFGVnZ2vlypUnDRWSFBUVpagovlyCitPhGqmQZya1Ga6j06pfltF6uq87AwBYrFG35pumqcmTJ2vZsmX69NNPlZqa2lJ9wZ/l57hvDFaHIcko3uOqAwCElEaNWEyaNEkLFy7U3//+d8XFxWnv3r2SpPj4eLVqxZoEIaN0n3frAABBo1EjFgsWLFBRUZEuuugiJSUlHX8tXry4pfqDH/qhMrZhhbEs1Q0AoaZRIxbNWPICQcA0Tb3+75165D2HPg1LUCfj8AmSqSHZk11bnAMAQgrLH6JBiiuqNXlhrh54d6MqaqR3E6fIcN1NUaey9v2IOa4tzwEAIYVNyHBK63cf1eSFudp5uFzhNkMzL0vTf10wUsb3p3usYyF7sitUpGda1zAAwDIEC5yQaZr635wdevSD71XtMNW5TSvNG5+hjK5tXQXpmVLaKI+VNxmpAIDQRbBAvYrKq3X32+v0cZ7ryY5L+yTq8WsGKD4mwr3QFialDrWgQwCAPyJYwEPuziOavDBXe44eU2SYTb8f1VsTz+smw2CvDwDAyREscJzTaerlVT/osY82qcZpqlu7GM0bN0j9usRb3RoAIEAQLCBJOlJWpbveWqdPN+2XJI3qn6Ssq/vJHh1xik8CAPATggW0esdhTVmUq8KiCkWG2/Tg5emacE5Xpj4AAI1GsAhhTqepv6zcpj9/vEUOp6ke7Vtr3vhBSk9m11kAQNMQLIKd01Hv46AHSys1Y8k6rdxyQJI0emCy/nRVP8VGcUkAAJqOb5Fglpdd7wJWmzPu1405idpfUqnoCJtmZ/bR2MEpTH0AAJqNYBGs8rKlJRMlue/vYhYXqOfndyijerq2dbxY88cPUq9Ocdb0CAAIOgSLYOR0uEYq5LlpnFF7dE7MQkXdcZ9ioqN83R0AIIixCVkwys9xn/6ow2ZIbWv2K6bwax82BQAIBQSLYFS6z7t1AAA0EMEiGMUmercOAIAGIlgEoc8rTtdetZPT8xaLWoZk7+x69BQAAC8iWASRGodTj320STe/ukYPVd0ow5BM1X2EtPb9iDlsbw4A8DqCRZAoOHpM17/4lRZ8vk2S1PHsMaq+5lUZ9iT3QnuyNPY1KT3Tgi4BAMGOx02DwCff79Ndb63T0fJqxUWFa841/TWqf5KkvlKfK+pdeRMAgJZAsAhg1Q6nnvjnZr24crskqV/neM0bn6Fu7Vr/VGQLk1KHWtQhACDUECwC1K7D5ZqyKFdrdx2VJN1yfnfNvCxNUeGMRgAArEOwCED//G6v7n5rnYoramSPDtcTYwbo0j6drG4LAACCRSCprHEo64NN+t+cHZKkgSltNG98hrq0jbG2MQAAahEsAkT+oTJNXpirDXuKJEn/fWEP3X1pL0WE8WAPAMB/ECwCwPvrCzVz6XqVVNaoTUyE5o4doIvTWDUTAOB/CBZ+rKLaoT+9n6fXv9opSRrcra2eHZeh5DatLO4MAID6ESz8gdPhsdbED4crNOmNNcorLJYk3XHRaZrxqzMUztQHAMCPESyslpctfXSv2zbnx6IT9XT5BOVVDVa71pGae91A/eKMDhY2CQBAwxAsrJSXLS2ZKMl9t7CoY/v0lDFXXZPu1w23TFGiPdqa/gAAaCTG1a3idLhGKuS5BanNkAxDmuF4RYmxEb7vDQCAJiJYWCU/x236oy5DklG8x1UHAECAIFhYpXSfd+sAAPADBAuL7KyKa1hhLOtVAAACB8HCx0zT1OJvdmrEuzUqMBPkPGGlIdk7u7Y5BwAgQBAsfKi0skZ3Ll6re5duUHm19HaHyTJcd1PUqax9P2KOa9tzAAACBI+b+kheQbEmL1yj7QfLFGYz9LvhvfSbC0fK2NTTYx0L2ZNdoSI907qGAQBoAoJFCzNNU2/8e6cefi9PVTVOJcVH67lxGRrcPcFVkJ4ppY3yWHmTkQoAQCAiWLSg4opqzVq2Qe+vL5QkDUvrqCfHDFDb1pHuhbYwKXWoBR0CAOBdBIsWsmF3kSYvWqP8Q+UKtxmaeVma/uuCVBlG3fspAAAIHgQLLzNNU6/m7NCjH2xSlcOpzm1aad74DGV0bWt1awAAtDiChRcVlVfrnqXr9M/vXItaDU9P1BPXDlB8DMtyAwBCA8HCS3J3HtGURbnafeSYIsNsum9kmm4a0p2pDwBASCFYNJNpmnrpix/02EebVOM01TUhRvPHD1K/LvFWtwYAgM8RLJrhSFmVfvfWOn2yab8kaVS/JGVd00/2aKY+AAChiWDREE6HxzoTq3cWaeqiXBUUVSgy3KYHL0/XhHO6MvUBAAhpBItTycv2WBmzNKqjXi6doALHWUpt31rzxmeoTzJTHwAAsFfIyeRlS0smui+3LSmmYr/mhz+lB077j/4x5QJCBQAAtQgWJ+J0uEYqZHr8yGZIhmHo1pIXFBvB1AcAAD8iWJxIfo7HSMXPGTJlFO9x1QEAAEkEixMr3efdOgAAQgDB4gQ2FEU3rDA2sWUbAQAggBAs6nA4Tc1dvkWj3zdVYCbIecJKQ7J3dm1xDgAAJBEs3OwrrtD4v36lZz/ZKodp0yfdZsiQIanuDZq170fMcW15DgAAJLGOxXErthzQjMVrdaisSq0jw/To1f105cBRUl43j3UsZE92hYr0TOsaBgDAD4V8sKhxOPXn5Vu04PNtkqTeSXbNH5+hHh1iXQXpmVLaKI+VNxmpAADAU0gHi4KjxzR1Ua5W5x+RJN1wblfdPypd0RF1QoMtTEodakGHAAAElpANFp9u2qcZS9bpaHm14qLClXVNP13eP9nqtgAACGghFyyqHU498c/NenHldklSv87xmjc+Q93atba4MwAAAl9IBYtdh8s1ZVGu1u46Kkm6eUh3zRqZpqhw7pcAAMAbQiZY/PO7vbr7rXUqrqiRPTpcT4wZoEv7dLK6LQAAgkrQB4vKGofmfLhJr/xrhyRpYEobPTcuQykJMdY2BgBAEAqOYOF01Ps46M5D5Zq0cI027CmSJN02NFV3X5qmyHDWBQMAoCU0KVg8//zzeuKJJ1RYWKg+ffro6aef1tChFj2OmZdd7wJW36bP1M1fdlJJZY3axEToz2MGaFhv9vUAAKAlNfo/3RcvXqzp06fr97//vXJzczV06FBddtll2rlzZ0v0d3J52dKSiR7bm5vFBcr4cqqGVOdocLe2+mDqUEIFAAA+YJimaTbmA+ecc44GDRqkBQsWHD/Wu3dvjR49WllZWaf8fHFxseLj41VUVCS73d74jn/kdEhP9/UIFcd/bEqlUYlqdfd3ioiIaPrvAQAADf7+btSIRVVVlb799lsNHz7c7fjw4cOVk5NT72cqKytVXFzs9vKK/JwThgpJshmSvWqfInZ/5Z3fBwAATqlRweLgwYNyOBxKTHSfVkhMTNTevXvr/UxWVpbi4+OPv1JSUpre7c+V7vNuHQAAaLYmPR5hGO7biJum6XHsR7NmzVJRUdHx165du5ryKz3FNvCeiYbWAQCAZmvUUyHt27dXWFiYx+jE/v37PUYxfhQVFaWoqKimd3gi3Ya4ti8vLpRU320ihuvn3YZ4/3cDAIB6NWrEIjIyUmeeeaaWL1/udnz58uUaMsTHX+C2MGnEY7Vv6o6W1L4fMYftzQEA8KFGT4XMmDFDL730kv7nf/5H33//ve68807t3LlTt99+e0v0d3LpmdLY1yR7kvtxe7LreHqm73sCACCENXqBrOuuu06HDh3Sww8/rMLCQvXt21cffPCBunXr1hL9nVp6ppQ2qt6VNwEAgG81eh2L5vLaOhYAAMBnWmQdCwAAgJMhWAAAAK8hWAAAAK8hWAAAAK8hWAAAAK8hWAAAAK8hWAAAAK8hWAAAAK8hWAAAAK9p9JLezfXjQp/FxcW+/tUAAKCJfvzePtWC3T4PFiUlJZKklJQUX/9qAADQTCUlJYqPjz/hz32+V4jT6VRBQYHi4uJkGHW3O2+64uJipaSkaNeuXexBcgqcq4bjXDUO56vhOFcNx7lquJY8V6ZpqqSkRMnJybLZTnwnhc9HLGw2m7p06dJi/3y73c6F10Ccq4bjXDUO56vhOFcNx7lquJY6VycbqfgRN28CAACvIVgAAACvCZpgERUVpYceekhRUVFWt+L3OFcNx7lqHM5Xw3GuGo5z1XD+cK58fvMmAAAIXkEzYgEAAKxHsAAAAF5DsAAAAF5DsAAAAF4TUMHi+eefV2pqqqKjo3XmmWfqiy++OGn9ihUrdOaZZyo6Olo9evTQX/7yFx91ar3GnKvPP/9chmF4vDZt2uTDjq2xcuVKXXHFFUpOTpZhGHr33XdP+ZlQva4ae65C+brKysrSWWedpbi4OHXs2FGjR4/W5s2bT/m5ULy2mnKuQvXaWrBggfr373988avzzjtPH3744Uk/Y8U1FTDBYvHixZo+fbp+//vfKzc3V0OHDtVll12mnTt31lv/ww8/aOTIkRo6dKhyc3N13333aerUqVq6dKmPO/e9xp6rH23evFmFhYXHXz179vRRx9YpKyvTgAEDNG/evAbVh/J11dhz9aNQvK5WrFihSZMm6auvvtLy5ctVU1Oj4cOHq6ys7ISfCdVrqynn6kehdm116dJFc+bM0erVq7V69WpdfPHFuvLKK/Xdd9/VW2/ZNWUGiLPPPtu8/fbb3Y6lpaWZM2fOrLf+nnvuMdPS0tyO/eY3vzHPPffcFuvRXzT2XH322WemJPPIkSM+6M5/STLfeeedk9aE8nX1cw05V1xXP9m/f78pyVyxYsUJa7i2XBpyrri2ftK2bVvzpZdeqvdnVl1TATFiUVVVpW+//VbDhw93Oz58+HDl5OTU+5kvv/zSo/7SSy/V6tWrVV1d3WK9Wq0p5+pHGRkZSkpK0rBhw/TZZ5+1ZJsBK1Svq+bgupKKiookSQkJCSes4dpyaci5+lEoX1sOh0NvvvmmysrKdN5559VbY9U1FRDB4uDBg3I4HEpMTHQ7npiYqL1799b7mb1799ZbX1NTo4MHD7ZYr1ZryrlKSkrSiy++qKVLl2rZsmXq1auXhg0bppUrV/qi5YASqtdVU3BduZimqRkzZuiCCy5Q3759T1jHtdXwcxXK19aGDRsUGxurqKgo3X777XrnnXeUnp5eb61V15TPdzdtjrrbrJumedKt1+urr+94MGrMuerVq5d69ep1/P15552nXbt26cknn9SFF17Yon0GolC+rhqD68pl8uTJWr9+vVatWnXK2lC/thp6rkL52urVq5fWrl2ro0ePaunSpbrpppu0YsWKE4YLK66pgBixaN++vcLCwjz+i3v//v0eaexHnTp1qrc+PDxc7dq1a7FerdaUc1Wfc889V1u3bvV2ewEvVK8rbwm162rKlCnKzs7WZ599pi5dupy0NtSvrcacq/qEyrUVGRmp008/XYMHD1ZWVpYGDBigZ555pt5aq66pgAgWkZGROvPMM7V8+XK348uXL9eQIUPq/cx5553nUf/xxx9r8ODBioiIaLFerdaUc1Wf3NxcJSUlebu9gBeq15W3hMp1ZZqmJk+erGXLlunTTz9VamrqKT8TqtdWU85VfULl2qrLNE1VVlbW+zPLrqkWvTXUi958800zIiLCfPnll828vDxz+vTpZuvWrc0dO3aYpmmaM2fONG+88cbj9du3bzdjYmLMO++808zLyzNffvllMyIiwnz77bet+lfwmcaeq6eeesp85513zC1btpgbN240Z86caUoyly5datW/gs+UlJSYubm5Zm5urinJnDt3rpmbm2vm5+ebpsl19XONPVehfF399re/NePj483PP//cLCwsPP4qLy8/XsO15dKUcxWq19asWbPMlStXmj/88IO5fv1687777jNtNpv58ccfm6bpP9dUwAQL0zTN+fPnm926dTMjIyPNQYMGuT2OdNNNN5m/+MUv3Oo///xzMyMjw4yMjDS7d+9uLliwwMcdW6cx5+qxxx4zTzvtNDM6Otps27atecEFF5jvv/++BV373o+PrdV93XTTTaZpcl39XGPPVShfV/WdJ0nmK6+8cryGa8ulKecqVK+tW2+99fjf6x06dDCHDRt2PFSYpv9cU2ybDgAAvCYg7rEAAACBgWABAAC8hmABAAC8hmABAAC8hmABAAC8hmABAAC8hmABAAC8hmABAAC8hmABAAC8hmABAAC8hmABAAC8hmABAAC85v8Bv0dxSrjJZ1AAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# 在区间 [0, 3] 上等距生成 20 个数,作为横坐标\n", "x = np.linspace(0, 3, 20)\n", "\n", "# 在区间 [0, 9] 上等距生成 20 个数,作为纵坐标(与 x 保持线性关系 y = 3x)\n", "y = np.linspace(0, 9, 20)\n", "\n", "# 绘制折线图,显示 x 与 y 的线性关系\n", "plt.plot(x, y)\n", "\n", "# 在同一张图上用圆点标记出每个数据点,便于观察采样位置\n", "plt.plot(x, y, \"o\")\n", "\n", "# 弹出窗口展示最终图形\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.11" } }, "nbformat": 4, "nbformat_minor": 4 }