{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "# 2D plotting\n", "\n", "Plot a basic 2D figure\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAGdCAYAAADQVEAEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAANs5JREFUeJzt3Xt01NW9///XiGSCmBmLmJvGNLVQLaHYBitEUaCSmrYcFS8opwoKFhpAMd5A2kKpx1hbKVYEL1UuFpSfFm9HKqYLuVhKD+TgkS9aRcEmSmIKaga5JCX5/P6gxI4JZt4zEzI783ysNWuZyWvv/RknyZu9P5/ZH5/neZ4AAEBCO6ajDwAAALSNgg0AgAMo2AAAOICCDQCAAyjYAAA4gIINAIADKNgAADiAgg0AgAOO7egD+Lympibt3LlTaWlp8vl8HX04AAAjz/O0Z88eZWdn65hj2m9eeODAATU0NMTcT0pKilJTU+NwRO0r4Qr2zp07lZOT09GHAQCIUVVVlU455ZR26fvAgQPKy8tTTU1NzH1lZmZqx44dCV+0E65gp6WlSZJukeSPsM1tve3jXPq2Lf+HuodtDX78I1tekuZPNcX/HrzblO9pSh/SfbaxwdjtxgbWvCQ9YUq/HXzUlO9d18+UlyQV/58p/vF6W/dfSrHlJUlTjPn3jPnLjHlJH15hy2eY34tLjHmpX3CmKW9LS4XGvCRl1I035X8bfMiUv6FuqSkvSbplVMTRUIOUs+izv+ftoaGhQTU1Naqq2qFAIBB1P6FQSDk5eWpoaEjegj1v3jz96le/UnV1tfr06aM5c+Zo0KBBbbY7vAzulxTp/7pAF/vxdTXmA4HjbA2i+QMbsP2wWH8VovmR7t7NOoj1qLob85L1f+7xxt4D0fxAGX+TGo3dB6I5OxTpv3gPs/5SGH8lJGmfMW9/L+x/cK0LttaXHU3JCgRsP+PWV23+eyZF9TftaJzWDAQCMRVsl7TLyYVly5ZpypQpmj59ujZv3qxBgwapuLhYlZWV7TEcACBpHYzDww3tUrBnz56tsWPHaty4cTrjjDM0Z84c5eTkaP78+e0xHAAgaSVPwY77knhDQ4MqKio0dWr4+diioiKtX9/yxF19fb3q6+ubvw6FQvE+JABApxVr0XWnYMd9hr1r1y41NjYqIyMj7PmMjIxWr+YrKytTMBhsfnCFOAAALbXbB+Q+f7GB53mtXoAwbdo01dXVNT+qqqra65AAAJ1Oo2JbDrdeAtpx4r4k3rNnT3Xp0qXFbLq2trbFrFuS/H6//H7r5awAAEgsiccgJSVFBQUFKi8vD3u+vLxchYXRfCIRAAC0y+ewS0tLdfXVV6t///4aOHCgHn74YVVWVmrChAntMRwAIGklzwy7XQr2yJEjtXv3bs2aNUvV1dXKz8/XihUrlJubG3Eftw2QApEeXRTrBCtONDa48YemeJ+Fxv4lrV0405T/hrH/UJ2xgSQ9Z8xXn2SK52Qb+5c0zpifYd2tI5pfYOP+L1/yhtkaDCtvO/M5A35hy7c8YfXFLlpibCDpOs94jcq7totQva/+r61/ST8z5hcY85d7DxpbSCN8tsnNW8b+1/suNraQ9hiyR7cEUrBjVlJSopKSkvbqHgCApJJwe4kDABC5RsV2pXcSXyUOAMDRc/hjXbG0d0P73agUAADEDTNsAIDDuOgMAAAHULABAHBA8hRszmEDAOAAZtgAAIclz1XiFGwAgMNYEgcAAAmEGTYAwGHJM8NO3IK9cp0UOD6i6DzfN83dl1xly3/vt7b81p22vCQp6/emeGi87YYky4OmuCRpxIfGBpfa4mcau5ck631bVGbMz1pjHUFaUWGK7/ZdYMrfYUofco0xX+L1MOUbfR8ZR5A0yXYzD809zhT3ecZfVEmj19puJzP6vPNsA6Ta71JoeyekrcZD0pr/NjaQpE8iToZC+xQM/iiKMaKRPAWbJXEAAByQuDNsAADalDwzbAo2AMBhyfOxLpbEAQBwADNsAIDDWBIHAMABFGwAAByQPAWbc9gAADiAGTYAwGHJM8OmYAMAHMbHugAAQAJJ2Bl2QXCQukSYPRBF/yVLbbv1XvaEcd/k/7PFJenn2ba9wf9o7H9DnrGBJN1uzN9vi7/wNWP/kvRXY35wb1P8BN+XjANIXzfmf2XMP3SKsYGkre8bG9Tafsa7eL8zDiBptG3fbmmvLX62z9i/NPx/bPn+WmvKz/Ds+3b38v3A1uAt6whR3FhA5xuyoSj6j1ajYpsluzPDTtiCDQBA25LnHDZL4gAAOIAZNgDAYckzw6ZgAwAcxlXiAAAggTDDBgA4jCVxAAAcQMEGAMAByVOwOYcNAIADmGEDAByWPDNsCjYAwGHJ87GuhC3YD0jqHmH2HO96c/8bfY+Y8tcV2fqvKLblJWnGq8b8f9nyg6ybj0tat922X/QKn22v6Gj2gR+xwJj3vW3Kf9Lf1r8k7d1kyw8z9j/Nui+4Iv/9OaxPum3P9ceM77UkfdmYH7roHVuDKP4/vWHMv9DTOsI11gb6lrVBzTZbvqKXdQTtN/xe7Df3jkgkbMEGAKBtB6WIbxV1pPZuoGADAByWPAWbq8QBAHAAM2wAgMOSZ4ZNwQYAOCx5rhJnSRwAAAcwwwYAOOygYpt7siQOAMBRQMEGAMAByVOwOYcNAIADmGEDABzWqNiu9HbnKnEKNgDAYcnzsa6ELdgD6noqEIhsxX608UYeklRjzK803qWi4BTjANKhO55YPGuLr0t50ziApK+cYYrPNXa/wnvQ2EK60TfBlF/uVdsGuCzLlpfU/Wu2/P9bYssP97JtDSRJs2zxF20387huvq17SdKEQlP8NJ/tJhXWXyFJst4Tp2GXLf+R7yPjCFKOtcFNxpt5bLcOIHV7OPLsP/dLutE+Br5YwhZsAADadlCSL8b2boj7RWczZ86Uz+cLe2RmZsZ7GAAAdKjgxvpwQ7vMsPv06aM//elPzV936RLLPq8AAKBdCvaxxx7LrBoAcBSwJB6Tbdu2KTs7W3l5ebryyiu1ffuRr3Cor69XKBQKewAAEJnkWRKPe8E+++yztXjxYq1cuVKPPPKIampqVFhYqN27d7eaLysrUzAYbH7k5JivjwQAoNOLe8EuLi7WpZdeqr59++qCCy7Qiy++KElatGhRq/lp06aprq6u+VFVVRXvQwIAdFqHP4cd7YPPYTfr3r27+vbtq23btrX6fb/fL7/f396HAQDolGJd0k7iJfHPq6+v15tvvqmsLPtmFAAAfLGOOYc9b9485eXlKTU1VQUFBVq3bt0X5pcsWaJ+/frpuOOOU1ZWlq699tojnio+krgX7FtuuUVr1qzRjh079Ne//lWXXXaZQqGQRo8eHe+hAAA46pYtW6YpU6Zo+vTp2rx5swYNGqTi4mJVVla2mn/11Vd1zTXXaOzYsdq6daueeuopbdy4UePG2XYXjHvBfv/993XVVVfpa1/7mkaMGKGUlBRt2LBBubm58R4KAJD0jv4Me/bs2Ro7dqzGjRunM844Q3PmzFFOTo7mz299v94NGzboy1/+sm644Qbl5eXp3HPP1fjx47Vp0ybTuHE/h/3kk0/Gp6Ord0ldI4t+N4ruRz1hbDDUmE/fYmwgSRWm9Gm+Mab8u945prwkafuvTfE1vlts/a+27Qsu2feBl/5mSm/4g3kALTbmQ94rpvz3fEOMI0g/ku1f7xdfYBzgXmNeks5ab4q/28PY/7eMeUky/i3oc5ItvzXDlpekdR/a8qcbtys/4XlbXpI+sXyAp8Hef/RivWjsUPvPf6T4SNdXNTQ0qKKiQlOnTg17vqioSOvXt/7zXVhYqOnTp2vFihUqLi5WbW2tnn76aX3/+983HSn3wwYAJL2cnJywjxiXlZW1mtu1a5caGxuVkRH+L7GMjAzV1LQ+nSgsLNSSJUs0cuRIpaSkKDMzUyeccILuv/9+0zFy8w8AgMMOSvJiaH9ohl1VVaVAIND8bFufXvL5wndX8zyvxXOHvfHGG7rhhhv0s5/9TN/97ndVXV2tW2+9VRMmTNCjjz4a8ZFSsAEADotPwQ4EAmEF+0h69uypLl26tJhN19bWtph1H1ZWVqZzzjlHt956qyTpG9/4hrp3765BgwbpzjvvjPhTVCyJAwAQoZSUFBUUFKi8vDzs+fLychUWtn6/93379umYY8LL7eGbYnle5P/YYIYNAHBYfGbYFqWlpbr66qvVv39/DRw4UA8//LAqKys1YcKhi2inTZumDz74QIsXH7ocdfjw4br++us1f/785iXxKVOm6Nvf/rays7MjHpeCDQBw2NEv2CNHjtTu3bs1a9YsVVdXKz8/XytWrGj++HJ1dXXYZ7LHjBmjPXv2aO7cubr55pt1wgknaOjQofrlL39pGpeCDQCAUUlJiUpKSlr93sKFC1s8N3nyZE2ePDmmMSnYAACHNSq2GXZTvA6k3VGwAQAOo2ADAOCAg4rtA0/uFGw+1gUAgAMSd4b9+CtS4PiIopm+s8zdn3iVLb/7P4wDPBfNDue2XbLf9Taa8o9F8f/puoG2vcG7WwcYPNfaQt/TJGOLm03pAd7Txv6lAbrO1uA2297gtmtJD1lqzH/vT7Z8yjfs++W/tqmvKf+wsf95040NJMm4D/fW/2fsv4/9QqP1PtuWlZdb9vmWNMIWP2Su4Xc1tF965NZoRolC8sywE7dgAwDQpuQp2CyJAwDgAGbYAACHNSq2WXIsV5gfXRRsAIDDDkpq/S5ZkXGnYLMkDgCAA5hhAwAcljwzbAo2AMBhyVOwWRIHAMABzLABAO7ymmKbJLszwaZgAwAc1qTYPtXlzr4pFGwAgMMa//WIpb0jOIcNAIADfJ7nJdQKfigUUjAYVF3d3xUIBCJr9NqX7AMZ79WwaLMtn2aLS5KqjPlxxnx32z0wJEnL7rXlLzP2P9yYl6QVdxsbbLPFKx419i+p4GVjg2Ef2/If23/GX+thy5/p2RqM9BnvmiFpmfcXU/5E30BT/lxT+pDnPOPNOX5puzGHvmaLS5LuMebXG29Y86b1N1XSPyOPhj6VgudIdXV1kf8dN2quFTVSLEOEQlIws32PNV5YEgcAuCuJzmGzJA4AgAOYYQMA3JVEF51RsAEA7mJJHAAAJBJm2AAAdzUptmVth2bYFGwAgLuS6Bw2S+IAADiAGTYAwF1JdNEZBRsA4K4kWhKnYAMA3EXBTgA35UopEWbn/8nc/dzNF5jyDxn7/7kxL0k3esNsDQ6W2/L7bHFJGmndcniAbS/enb6QcQBJt19ibJBqShf8rtTYv6S7zrLl77TtDX7LWlv3kvTrObZ8o3Fv8GWecQBJ6m7bG9y6/f0dzxgbSOrls+0Nvs0zbKotKd3X1ZSXpGuM+V+fZftFHbrJOICkPxiyUfxWIwKJW7ABAGgL57ABAHBAEi2J87EuAAAcwAwbAOAuT7Eta3vxOpD2R8EGALiLJXEAAJBImGEDANyVRDNsCjYAwF1J9LEulsQBAHAAM2wAgLtYEgcAwAEU7ARwmiLeAvo9n21fcEma5D1ry192sW2Ap3vb8pKksab0gK62vcStO3BL0u3eV2wNHtxuir8Wxf7md/lsG0bfcZVxgKWjjQ0kXWvMG4f49f8a+5ek4W+a4l3OP8OUP9M3xZSXpNc825txx8lP2AaIYo/sn5hb2Hb6rp1iHkCybj/+oS2+yrYd+iH/FXm0yz5JV0QxRjQ4hw0AABJJ4s6wAQBoS5NiW9buzDPstWvXavjw4crOzpbP59Ozzz4b9n3P8zRz5kxlZ2erW7duGjx4sLZu3Rqv4wUA4DNNcXg4wlyw9+7dq379+mnu3Lmtfv+ee+7R7NmzNXfuXG3cuFGZmZkaNmyY9uzZE/PBAgCQrMxL4sXFxSouLm71e57nac6cOZo+fbpGjBghSVq0aJEyMjK0dOlSjR8/PrajBQDg3yXRVeJxvehsx44dqqmpUVFRUfNzfr9f559/vtavX99qm/r6eoVCobAHAAARaYzDwxFxLdg1NTWSpIyMjLDnMzIymr/3eWVlZQoGg82PnJyceB4SAACdQrt8rMvn84V97Xlei+cOmzZtmurq6pofVVVV7XFIAIDOKIkuOovrx7oyMzMlHZppZ2VlNT9fW1vbYtZ9mN/vl9/vj+dhAACSBeewo5OXl6fMzEyVl3+2A1dDQ4PWrFmjwsLCeA4FAEBSMc+wP/30U73zzjvNX+/YsUOvvfaaevTooVNPPVVTpkzRXXfdpV69eqlXr1666667dNxxx2nUqFFxPXAAAJJphm0u2Js2bdKQIUOavy4tLZUkjR49WgsXLtRtt92m/fv3q6SkRB9//LHOPvtsvfzyy0pLS4vfUQMAIEmeYjsP7cXrQNqfz/O8hDrcUCikYDCouiulQEpkbWYsto/zcy9ga1Bp/LhZD1tcknT8P2z52pNM8fGtX0bwhR7y/mJscbwtvravsX+ZbkIgSae/bMv/zdtiayDpNZ/tdZzpDTOOcI8xL53o+6Ypv9vbZhxhpTEv6YeTbPnf224+s9Rnu/mMJI3yLjfl/+Z7ypR/zpQ+5HbrzT9etMX7FLWd+byt3448G2qUghVSXV2dAgHj39pIxzhcK56UAsfF0M8+KXhl+x5rvHDzDwAAHMDNPwAA7kqi22tSsAEA7kqii85YEgcAwAHMsAEA7kqiGTYFGwDgriQ6h82SOAAADmCGDQBwVxItiTPDBgC4q0mx3Qs7yiXxefPmKS8vT6mpqSooKNC6deu+MF9fX6/p06crNzdXfr9fp512mh577DHTmMywAQDu6oBz2MuWLdOUKVM0b948nXPOOXrooYdUXFysN954Q6eeemqrba644gp9+OGHevTRR/XVr35VtbW1OnjwoGlcCjYAAAazZ8/W2LFjNW7cOEnSnDlztHLlSs2fP19lZWUt8i+99JLWrFmj7du3q0ePQ/tWf/nLXzaPm7gFe4ikbpFFvxrFXuLKse0N/uv3bd3fYtvGWZI0e7Ntb3Djltra7fU2tpCkc4z5i2zx84qN/Uva80dT/G+PGPsfad/f3Lx1/P3lbWf+3U77D9TPrA0e62WKLx1rHUAa5UV4g4DD9tv2Bh9l3fpe0mDj3uCrJ9r6P926RbsknW2L/8S4N/jW/7PlJWlcv8izDfbuoxenc9ihUHhN8Pv98vv9LeINDQ2qqKjQ1KlTw54vKirS+vXrWx3i+eefV//+/XXPPffo8ccfV/fu3fUf//Ef+sUvfqFu3SIsdErkgg0AQFvitCSek5MT9vSMGTM0c+bMFvFdu3apsbFRGRnhd1PKyMhQTU1Nq0Ns375dr776qlJTU/XMM89o165dKikp0UcffWQ6j03BBgAkvaqqqrC7dbU2u/53Pp8v7GvP81o8d1hTU5N8Pp+WLFmiYDAo6dCy+mWXXaYHHngg4lk2BRsA4K44LYkHAoGIbq/Zs2dPdenSpcVsura2tsWs+7CsrCydfPLJzcVaks444wx5nqf3339fvXpFdjqKj3UBANwVy0e6oij2KSkpKigoUHl5+HUo5eXlKiwsbLXNOeeco507d+rTTz9tfu7tt9/WMccco1NOOSXisSnYAAAYlJaW6ne/+50ee+wxvfnmm7rppptUWVmpCRMmSJKmTZuma665pjk/atQonXjiibr22mv1xhtvaO3atbr11lt13XXXcdEZACBJdMDnsEeOHKndu3dr1qxZqq6uVn5+vlasWKHc3FxJUnV1tSorK5vzxx9/vMrLyzV58mT1799fJ554oq644grdeeedpnEp2AAAdx3e6SyW9lEoKSlRSUlJq99buHBhi+dOP/30FsvoViyJAwDgAGbYAAB3JdHtNSnYAAB3JdHduijYAAB3UbA73jPjpeMizF7tLbQP8OwYU7zxEmP/04x5SaWX2xoV+lpuMv9FlvveNuUlaYS339jiZFN6gO8jY/+Htpm3sB2RNMnzjC2kU7u2vsPREf3AOEBetbGBdGNqlil/k3Fv8N94X7c1kKST3zDFT99p6/5v1h8OSauX2PKh/7TlA17rd2/6YrY9+e+c9YCx/+8Y89LvvMhfeCi0X48Hf2weA18sYQs2AABt4hw2AAAOSKIlcT7WBQCAA5hhAwDclUQzbAo2AMBdnmI7D22/xrTDsCQOAIADmGEDANzFkjgAAA5Ioo91sSQOAIADmGEDANzFkjgAAA6gYAMA4IAkOoedsAV7l6RukYZ/OMbc/5+NG/5/1zrA5b2tLSTdZkr/U7abf6SZ0v+SGfG7cEjNTab4hht+Y+tf0qDf2vLrvD/ZGvzKeCMPSbrBmDfe1EKy3chDktTLFv/NKdYBSq0NpA8eNsVv8P2Prf/+trgknWy8mccHnvF3O8V+050b/3m/KX+fd7ltgGFP2fKSVL7VEHaoCjokYQs2AABtYkkcAAAHNCm2ouvQYgAf6wIAwAHMsAEA7uKiMwAAHJBE57BZEgcAwAHMsAEA7mJJHAAAB7AkDgAAEgkzbACAu5Johk3BBgC4i3PYHe98ScdHGt5u7/8c75/GFtfZ4jseN/YvKfVLpvgg697PnxjzknS2Lb7cZ9sbfIWte0nSOu/Hpvxw3wWm/Av1pvghJxvztpcgrTHmJW1ca8sbf8K1Rf2MLSQNte0NXvK8sf/hhcYG0nG/Wm/K9/HZ9gavMqUPCXkPmvIVvgmm/Iem9CHf+6FhA3zrn9dYsNMZAABIJOaCvXbtWg0fPlzZ2dny+Xx69tlnw74/ZswY+Xy+sMeAAQPidbwAAHymMQ4PR5gL9t69e9WvXz/NnTv3iJkLL7xQ1dXVzY8VK6JZ+AQAoA1NcXg4wnwOu7i4WMXFxV+Y8fv9yszMjPqgAABAuHY5h7169Wqlp6erd+/euv7661VbW9sewwAAkl0SLYnH/Srx4uJiXX755crNzdWOHTv005/+VEOHDlVFRYX8fn+LfH19verrP7ssNxQKxfuQAACdFR/rit7IkSOb/zs/P1/9+/dXbm6uXnzxRY0YMaJFvqysTD//+c/jfRgAAHQq7f6xrqysLOXm5mrbtm2tfn/atGmqq6trflRVRfOpRQBAUmJJPH52796tqqoqZWVltfp9v9/f6lI5AABtalRsU8/OXLA//fRTvfPOO81f79ixQ6+99pp69OihHj16aObMmbr00kuVlZWl9957T3fccYd69uypSy65JK4HDgBAMjEX7E2bNmnIkCHNX5eWlkqSRo8erfnz52vLli1avHixPvnkE2VlZWnIkCFatmyZ0tLS4nfUAABIkqfYLhzz4nUg7c9csAcPHizPO/IrXLlyZUwHdFjv7lLAF2H4H9GM8Jwx/2dbPC/F2L90n6/BlLduR/OYMS9JJz93lSk/YsMTtvyAKFZevj7fFDdvw32jtYGk14z5h4z5Tca8pBnG/BbzW/GBtYG0apgt/2S5Lb/Bti+4JG3zvmFsscSY/4MxL0m2GwW8Yuz9Fm+hsYV0n29MxNkD5t5j0Cgp0lpxpPaOSNibfwAA0KYkKtjc/AMAAAcwwwYAuIuNUwAAcABL4gAAIJEwwwYAuIslcQAAHMCSOAAASCTMsAEA7mpSbLNklsQBADgKmhTbkrhDBZslcQAAHMAMGwDgrlgvGnPoorPELdjHKfL5/0vRDGC8+UfFdlP8g/627iXpxp7G/D9sdz1p9J1kG0CS+UdkQLotf9EztrwkvbHNFA99t5et//nfsuUlLfX9ryk/yqu2DfCz1u8n/0UKuxobLDe+d/qaMS9pq/FmHlf+xZb/1kBbXlLfza+b8lve6WvKj/qqKS5JWur92pS/5T9t/ecYbuRx2HBD1nYboxhRsAEAcADnsAEAQCJhhg0AcBdL4gAAOIAlcQAAkEiYYQMA3BXrDNmhGTYFGwDgrkZJXgztHSrYLIkDAOAACjYAwF1NcXhEYd68ecrLy1NqaqoKCgq0bt26iNr9+c9/1rHHHqszzzzTPCYFGwDgrsY4PIyWLVumKVOmaPr06dq8ebMGDRqk4uJiVVZWfmG7uro6XXPNNfrOd75jH1QUbAAATGbPnq2xY8dq3LhxOuOMMzRnzhzl5ORo/vz5X9hu/PjxGjVqlAYOtG+hKyXyRWdrJaVFmL3O3v1TLz9uyg8y9n9yvbGBZNusV1LIuDd4wPu6bQBJhT7b/6f13hzbAD2m2PKS9C3b3uA5m23dP2LcF1ySRr1hbVFii99s7V9aYMz/5MVaW4PTzzCOIGm9MT/B9odtuPG9lqQtfzQ2eMIWrzJ2f4jtDR+/5BZb3pQ+5Cde5P9zQ6FP9WjQ+lczSnG66CwUCoU97ff75ff7W8QbGhpUUVGhqVOnhj1fVFSk9euP/AO+YMECvfvuu/r973+vO++8M6pDZYYNAHBXnM5h5+TkKBgMNj/KyspaHW7Xrl1qbGxURkZG2PMZGRmqqalptc22bds0depULVmyRMceG/08OXFn2AAAtKVJsc2w/9W2qqpKgUCg+enWZtf/zucL317N87wWz0lSY2OjRo0apZ///Ofq3bt3DAdKwQYAQIFAIKxgH0nPnj3VpUuXFrPp2traFrNuSdqzZ482bdqkzZs3a9KkSZKkpqYmeZ6nY489Vi+//LKGDh0a0TFSsAEA7op1L3Hj7DwlJUUFBQUqLy/XJZdc0vx8eXm5Lrroohb5QCCgLVu2hD03b948rVq1Sk8//bTy8vIiHpuCDQBwV6OOasGWpNLSUl199dXq37+/Bg4cqIcffliVlZWaMGGCJGnatGn64IMPtHjxYh1zzDHKz88Pa5+enq7U1NQWz7eFgg0AgMHIkSO1e/duzZo1S9XV1crPz9eKFSuUm5srSaqurm7zM9nRoGADANzVATNsSSopKVFJSesfz1y4cOEXtp05c6ZmzpxpHpOCDQBw11E+h92R+Bw2AAAOYIYNAHBXBy2JdwQKNgDAXUlUsH2e5yXU4YZCIQWDQdVlS4EIF+y3vm8fx7r1c3dj/nveNGML6Uxf61vhHclrXmS3c/tMf2Neus/XzZT/lrF/69bSknS7d60p/z2fbVftFftM8UMWGfPGH6i3rzH2L6m3Z9yc/tkXbPmLre+2pAbjPu17jf1/Kd3YQNJ3jXuor7SOscuYl17y2e75eKH1z/iTUVS4TyKPhvZLwdJDd6eKZDOSaDTXCp8UiKFghzwp6LXvscYLM2wAgLs8OTVLjgUFGwDgrChvaR3W3hUUbACAs5KpYPOxLgAAHMAMGwDgrH+7pXXU7V1BwQYAOIslcQAAkFCYYQMAnMWSOAAADmBJHAAAJBRm2AAAZzUptlkyS+IAABwFyXQOO2Fv/rFTUqTbsHe339NCst0/QirpYYoHfB8ZB5AeNOZHed82tnjHmJdCxtcRuME4wH3VxgaSNNuY32SLv/CKsX9Jw683NrjIFi//gbF/SZcb86ON+auMeUnqaswXzDQ2+KoxL/X1/dCU3zLEOMCqN40NJL17hi1/u7H/vxrzklQV+U1PQqEmBYO7jsrNP96VlBZDP3sknSZu/gEAQLviorMjKCsr01lnnaW0tDSlp6fr4osv1ltvvRWW8TxPM2fOVHZ2trp166bBgwdr69atcT1oAACkzwp2LA9XmAr2mjVrNHHiRG3YsEHl5eU6ePCgioqKtHfvZzetveeeezR79mzNnTtXGzduVGZmpoYNG6Y9e/bE/eABAMmtKQ4PV5iWxF966aWwrxcsWKD09HRVVFTovPPOk+d5mjNnjqZPn64RI0ZIkhYtWqSMjAwtXbpU48ePj9+RAwCQRGL6HHZdXZ0kqUePQxdk7dixQzU1NSoqKmrO+P1+nX/++Vq/fn2rfdTX1ysUCoU9AACIBEviEfA8T6WlpTr33HOVn58vSaqpqZEkZWRkhGUzMjKav/d5ZWVlCgaDzY+cnJxoDwkAkGSSaUk86oI9adIkvf7663riiSdafM/n84V97Xlei+cOmzZtmurq6pofVVVV0R4SAACdVlQf65o8ebKef/55rV27Vqecckrz85mZmZIOzbSzsrKan6+trW0x6z7M7/fL7/dHcxgAgCSXTDudmWbYnudp0qRJWr58uVatWqW8vLyw7+fl5SkzM1Pl5eXNzzU0NGjNmjUqLCyMzxEDAPAvyXQO2zTDnjhxopYuXarnnntOaWlpzeelg8GgunXrJp/PpylTpuiuu+5Sr1691KtXL91111067rjjNGrUqHZ5AQAAJANTwZ4/f74kafDgwWHPL1iwQGPGjJEk3Xbbbdq/f79KSkr08ccf6+yzz9bLL7+stLRYNo8DAKAl9hLvQIf3h637LymQGlmbipvt4/y3MT/D22JrUNjXOIKk9cNM8ct95W2H/s1TXhR7Gr9p29P45K/buv/Am2xrIEn6rS0eav2CxyPpFbR1L0nbvIXGFvNM6eG+/zH2L73gfWxssciYX2PMS8/6njHlL/aM18VW2//8npVty2ca+3/Buve4JK0y7mn9A9vHYX/4oq17Sfr9gsizof1SsKR99+c+XCvWSzo+hn4+lVQoN/YS537YAAA4gJt/AACclUw3/6BgAwCclUznsCnYAABnJdMMm3PYAAA4gBk2AMBZnmJb1k6oj0m1gYINAHAWS+IAACChMMMGADgrmWbYFGwAgLOS6WNdLIkDAOCAhJ1hV02XIr1dSIH3T3P/Bbd1NeV/6bPtDW7r/ZBSnWDKP2XcA7nEZ9sXXJJ6GPM3WAcov9/aQncW2dr8xKs25Xspq+3Q5z04xhQf9mNb9zW2+L+cZovf9JEpfvscW/eSdJW1wY3G+c+vrANIG71ppvx4X5ltgFXmV61FvidM+dE7bf2fbPzbIUnLr408u8/efdRYEgcAwAHJVLBZEgcAwAHMsAEAzkqmi84o2AAAZzUptmVtCjYAAEdBMs2wOYcNAIADmGEDAJyVTFeJU7ABAM5KpoLNkjgAAA5ghg0AcFYyXXRGwQYAOIslcQAAkFASdoad81MpkBpputQ+wFds8du9W03513xR3IWg4SlbPmiLz/u6LS9JKj/OFH/PZ9z2/4AtLkk/WWDLn+Cz3czjk7tt/UvSfcabeZR7VbYGDTm2vKRJPtvNPOZeauv/l/+fLS9JOtsWPz3Xlr/kt7a8JKXIdjOPh5629X+y8UYekvSB8b3Qd2zxh4zdS9J2Q9Z+O6boJdMMO2ELNgAAbfEU23loL14HchSwJA4AgAOYYQMAnMWSOAAADuBjXQAAOCCZZticwwYAwAHMsAEAzkqmGTYFGwDgrGQ6h82SOAAARvPmzVNeXp5SU1NVUFCgdevWHTG7fPlyDRs2TCeddJICgYAGDhyolStXmsekYAMAnNUYh4fVsmXLNGXKFE2fPl2bN2/WoEGDVFxcrMrKylbza9eu1bBhw7RixQpVVFRoyJAhGj58uDZv3mwalyVxAICzmhTbeeholsRnz56tsWPHaty4cZKkOXPmaOXKlZo/f77KylpudTtnzpywr++66y4999xzeuGFF/TNb34z4nETt2CfKinSbazfvd/e/1RbPPPHtr3Ba6LYj/onflv+Tu8vtgbVA215SYuMe4OP/qNxgCuNeUnqYoufae3ftrW0JOk3xvzXfLa9wS/0AsYRpLneRcYWf7fFb1lr7F/S5cNM8b95d9j6Dw2x5SWNNu7Jr/+yxT+YaOxf0vIHbPkVxv5/acxL0vj3I8+G9kjBM6IYpAOFQqGwr/1+v/z+ln+UGxoaVFFRoalTw4tIUVGR1q9fH9FYTU1N2rNnj3r06GE6RpbEAQDOaorDQ5JycnIUDAabH63NlCVp165damxsVEZGRtjzGRkZqqmpieiY7733Xu3du1dXXHGF5aUm8AwbAIA2xOtjXVVVVQoEPlvJam12/e98Pl/Y157ntXiuNU888YRmzpyp5557Tunp6aZjpWADAJJeIBAIK9hH0rNnT3Xp0qXFbLq2trbFrPvzli1bprFjx+qpp57SBRdcYD5GlsQBAM6K15J4pFJSUlRQUKDy8vKw58vLy1VYWHjEdk888YTGjBmjpUuX6vvf/75x1EOYYQMAnNURO52Vlpbq6quvVv/+/TVw4EA9/PDDqqys1IQJEyRJ06ZN0wcffKDFixdLOlSsr7nmGt13330aMGBA8+y8W7duCgYjv+qRgg0AcFZHFOyRI0dq9+7dmjVrlqqrq5Wfn68VK1YoNzdXklRdXR32meyHHnpIBw8e1MSJEzVx4mcfGxg9erQWLlwY8bgUbAAAjEpKSlRSUtLq9z5fhFevXh2XMSnYAABnJdNe4hRsAICzOmKns47CVeIAADiAGTYAwFncDzsRnCspLcLsyU/a+//kD6b4PN9Tpvw4417lkvS7+cYGQ417g9t2wZMklbcdCTP6E2ODTGNekg7Y4t/8yNj/Lca8pOyf2vJfMfb/ki/UduhzNulxU36Nsf/ya4wNJE3y2X6i5j5sy//5R6a4JOkEa4P/3WhsYL+N4oi5Z5ry/Xw/MOVP87aY8pKkr/SNPHsU15mT6Rw2S+IAADggcWfYAAC0IZmWxE0z7LKyMp111llKS0tTenq6Lr74Yr311lthmTFjxsjn84U9BgwYENeDBgBAOvpbk3YkU8Fes2aNJk6cqA0bNqi8vFwHDx5UUVGR9u7dG5a78MILVV1d3fxYscJ6t1YAAPDvTEviL730UtjXCxYsUHp6uioqKnTeeec1P+/3+5WZGc3VRAAARI4l8QjV1dVJknr06BH2/OrVq5Wenq7evXvr+uuvV21t7RH7qK+vVygUCnsAABCJxjg8XBF1wfY8T6WlpTr33HOVn5/f/HxxcbGWLFmiVatW6d5779XGjRs1dOhQ1dfXt9pPWVmZgsFg8yMnJyfaQwIAJBlPsZ2/9o7+IUct6qvEJ02apNdff12vvvpq2PMjR45s/u/8/Hz1799fubm5evHFFzVixIgW/UybNk2lpaXNX4dCIYo2AACfE1XBnjx5sp5//nmtXbtWp5xyyhdms7KylJubq23btrX6fb/fL7/fH81hAACSXDKdwzYVbM/zNHnyZD3zzDNavXq18vLy2myze/duVVVVKSsrK+qDBACgNclUsE3nsCdOnKjf//73Wrp0qdLS0lRTU6Oamhrt379fkvTpp5/qlltu0V/+8he99957Wr16tYYPH66ePXvqkksuaZcXAABAMjDNsOfPP7TZ9eDBg8OeX7BggcaMGaMuXbpoy5YtWrx4sT755BNlZWVpyJAhWrZsmdLSIt0YHACAyCTTXuI+z/MS6iK5UCikYDCouro/KBDoHlmjty+0D9T7amODXab0Ft8fjf1LfT80NlhuzE+4ydhA0obf2PJ/M/YfxU1SVFNly19mvIjx6ctteUn62HZzGP23sf/txrwk3WbMzzXmb32p7cznTPLZflfnentsA1RGMTH4T2N+3XBb/mcvGAeQXviFLT88wzhAzXHGBpKe2hdxNLRPCo459NHfQCBgHyuSMf5VK/5TUkoM/TRIWqL2PdZ44eYfAAA4gJt/AACclUxL4hRsAICzuEocAAAkFGbYAABnNSm2WTJL4gAAHAWcwwYAwAGNiu3cLuewAQBAXDHDBgA4K5lm2BRsAICzkukcNkviAAA4IHFn2GMulbpGmF12qrn7rb7HTfk+xr197bsHS33TjXszT1hiir/nM+4LLunLtiG05Vpbvu/xtvwh3zelP/iDrfef+oz7gkt62pgP/cPYINWYl+z7tOdaB7jX2kBz62z5jT7b3uBn7bT1L0lbX7Xl+7wezW+3zXDjMemc35nik3zjjANIc98yhD81dx81lsQBAHAAS+IAACChMMMGADiLnc4AAHBAoyRfjO1dwZI4AAAOYIYNAHBWMl10RsEGADgrmZbEKdgAAGclU8HmHDYAAA5ghg0AcBbnsAEAcEAyLYknbsFeOEgKRHh4S18xd9/Hy7Y1+LFtk+K/2HqXJM32XWjKl3rDTPkyU/qQh0bZNgfve8kC2wDd7rblJS3z2TbJHukNN+Uf089MeUl6rOIsUz79JFv/tV+z5SVJnxjzj9ji43zlxgGk3/3UlrftGi/V/p+xgaQ+3n5ji1mm9KJ+9t+80aOtLWybzc817xsvnWb4GXRp1uqSxC3YAAC0wVNs/0Dw4nUgRwEFGwDgrFiXtF1aEucqcQAAHMAMGwDgrGSaYVOwAQDOalJsV4m7dIEcS+IAADiAGTYAwFksiQMA4AAKNgAADuAcNgAASCjMsAEAzop1huzSDJuCDQBwVjIVbJ/neQm1lWooFFIwGNSJiny9vtbbE8VIBbb4jrdN8be/YuteknofZ2yw2Ji33StEkjQ8aMvfb+z/y/nGBpJkvHHBshdt+ZHe07YGku7yXWbK32G9+YweM+Yl6TRT+pe+Xqb87d6fTHlJetx3gSl/9T+MA0w05iXpZlv8qbNteeP9TiRJfzDmbbcjkZZ5VxlbSNKPIk6GQnsVDP5AdXV1CgQCUYwVyRiHasWpiu3cbpOkSqldjzVemGEDAJzVqNhu4OHSDJuCDQBwVjIVbK4SBwDAAcywAQDOSqaLzijYAABnsSQOAAASCjNsAICzmhTbDDuhPtfcBgo2AMBZse4lTsEGAOAoaFTyFGzOYQMA4ICEm2Ef3inVcuVeKBSKYiTjXVCNu59+aotLkkLWf+rtsw5gzEv6pzFv3SQ2FM3NaI0HZf7fFLK2kA6Yx7Bem7rXmJes74b9NdiPab91DOsPlPUHVjL/slp/OqL5Ebf+/bC+7FAomv9Rkb/fh3+HjsbO18k0w064vcTff/995eTkdPRhAABiVFVVpVNOOaVd+j5w4IDy8vJUU1MTc1+ZmZnasWOHUlNT43Bk7SfhCnZTU5N27typtLQ0+Xzh/24KhULKyclRVVVVwm/SHi/J+Jql5HzdyfiaJV53Z3zdnudpz549ys7O1jHHtN+Z1wMHDqihoSHmflJSUhK+WEsJuCR+zDHHtPkvskAg0Ol+wNuSjK9ZSs7XnYyvWeJ1dzbBoPFWf1FITU11otDGCxedAQDgAAo2AAAOcKpg+/1+zZgxQ36/v6MP5ahJxtcsJefrTsbXLPG6k+11I3oJd9EZAABoyakZNgAAyYqCDQCAAyjYAAA4gIINAIADnCnY8+bNU15enlJTU1VQUKB169Z19CG1q5kzZ8rn84U9MjMzO/qw4m7t2rUaPny4srOz5fP59Oyzz4Z93/M8zZw5U9nZ2erWrZsGDx6srVu3dszBxklbr3nMmDEt3vsBAwZ0zMHGSVlZmc466yylpaUpPT1dF198sd56662wTGd8ryN53Z3x/Ub7cKJgL1u2TFOmTNH06dO1efNmDRo0SMXFxaqsrOzoQ2tXffr0UXV1dfNjy5YtHX1Icbd3717169dPc+fObfX799xzj2bPnq25c+dq48aNyszM1LBhw7Rnj/WuEImjrdcsSRdeeGHYe79ixYqjeITxt2bNGk2cOFEbNmxQeXm5Dh48qKKiIu3d+9kNJTrjex3J65Y63/uNduI54Nvf/rY3YcKEsOdOP/10b+rUqR10RO1vxowZXr9+/Tr6MI4qSd4zzzzT/HVTU5OXmZnp3X333c3PHThwwAsGg96DDz7YAUcYf59/zZ7neaNHj/YuuuiiDjmeo6W2ttaT5K1Zs8bzvOR4rz2v5ev2vOR4vxEfCT/DbmhoUEVFhYqKisKeLyoq0vr16zvoqI6Obdu2KTs7W3l5ebryyiu1ffv2jj6ko2rHjh2qqakJe+/9fr/OP//8Tv/er169Wunp6erdu7euv/561dbWdvQhxVVdXZ0kqUePHpKS573+/Os+rLO/34iPhC/Yu3btUmNjozIyMsKez8jIiMtt1RLV2WefrcWLF2vlypV65JFHVFNTo8LCQu3evbujD+2oOfz+Jtt7X1xcrCVLlmjVqlW69957tXHjRg0dOlT19fUdfWhx4XmeSktLde655yo/P19ScrzXrb1uqfO/34ifhLtb15F8/labnue1eK4zKS4ubv7vvn37auDAgTrttNO0aNEilZaWduCRHX3J9t6PHDmy+b/z8/PVv39/5ebm6sUXX9SIESM68MjiY9KkSXr99df16quvtvheZ36vj/S6O/v7jfhJ+Bl2z5491aVLlxb/yq6trW3xr/HOrHv37urbt6+2bdvW0Ydy1By+Kj7Z3/usrCzl5uZ2ivd+8uTJev755/XKK6+E3Ua3s7/XR3rdrelM7zfiK+ELdkpKigoKClReXh72fHl5uQoLCzvoqI6++vp6vfnmm8rKyuroQzlq8vLylJmZGfbeNzQ0aM2aNUn13u/evVtVVVVOv/ee52nSpElavny5Vq1apby8vLDvd9b3uq3X3ZrO8H6jnXTgBW8Re/LJJ72uXbt6jz76qPfGG294U6ZM8bp37+699957HX1o7ebmm2/2Vq9e7W3fvt3bsGGD94Mf/MBLS0vrdK95z5493ubNm73Nmzd7krzZs2d7mzdv9v7+9797nud5d999txcMBr3ly5d7W7Zs8a666iovKyvLC4VCHXzk0fui17xnzx7v5ptv9tavX+/t2LHDe+WVV7yBAwd6J598stOv+cc//rEXDAa91atXe9XV1c2Pffv2NWc643vd1uvurO832ocTBdvzPO+BBx7wcnNzvZSUFO9b3/pW2MciOqORI0d6WVlZXteuXb3s7GxvxIgR3tatWzv6sOLulVde8SS1eIwePdrzvEMf95kxY4aXmZnp+f1+77zzzvO2bNnSsQcdoy96zfv27fOKioq8k046yevatat36qmneqNHj/YqKys7+rBj0trrleQtWLCgOdMZ3+u2Xndnfb/RPri9JgAADkj4c9gAAICCDQCAEyjYAAA4gIINAIADKNgAADiAgg0AgAMo2AAAOICCDQCAAyjYAAA4gIINAIADKNgAADiAgg0AgAP+fx/O+vKBx1NBAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# 创建一个随机数生成器实例(NumPy 推荐的新写法,可复现)\n", "rng = np.random.default_rng()\n", "\n", "# 生成 30×30 的二维数组,元素为 [0, 1) 区间的均匀随机值,模拟一幅“图像”\n", "image = rng.random((30, 30))\n", "\n", "# 将数组可视化为热力图,颜色映射使用 \"hot\"(黑→红→黄→白)\n", "plt.imshow(image, cmap=\"hot\")\n", "\n", "# 为图像添加右侧的颜色标尺,直观对应数值与颜色\n", "plt.colorbar()\n", "\n", "# 弹出窗口显示最终图形\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.11" } }, "nbformat": 4, "nbformat_minor": 4 }