{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "# Fitting to polynomial\n", "\n", "Plot noisy data and their polynomial fit\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "jupyter": { "outputs_hidden": false } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPhBJREFUeJzt3Xl8VPW9//HXTFaCyWCALECEgAsGlM1GliJKAVEMUrWiyHqxFdSfItVWrq2I7ZXaXr2tVWirAiqrC4tUBHFhEzSyRMWgIISGJSGQSBIICcnM+f1xSCCSQGbIzJnl/Xw8zoOckzOZT47Tnne+57vYDMMwEBEREbGI3eoCREREJLQpjIiIiIilFEZERETEUgojIiIiYimFEREREbGUwoiIiIhYSmFERERELKUwIiIiIpYKt7qAhnC5XBw8eJDY2FhsNpvV5YiIiEgDGIZBaWkprVq1wm6vv/0jIMLIwYMHSUlJsboMERER8cC+ffto06ZNvd8PiDASGxsLmL9MXFycxdWIiIhIQ5SUlJCSklJzH69PQISR6kczcXFxCiMiIiIB5nxdLNSBVURERCylMCIiIiKWUhgRERERSymMiIiIiKUURkRERMRSCiMiIiJiKYURERERsZTCiIiIiFgqICY9EwklTpdBZk4RBaXlJMRGk54aT5hdazKJSPBSGBHxIyu35zFteTZ5xeU1x5Id0UzNSGNw52QLKxMR8R49phHxEyu35zFx7tZaQQQgv7iciXO3snJ7nkWViYh4l8KIiB9wugymLc/GqON71cemLc/G6arrDBGRwKYwIuIHMnOKzmoROZMB5BWXk5lT5LuiRER8RGFExA8UlNYfRDw5T0QkkCiMiPiBhNjoRj1PRCSQKIyI+IH01HiSHdHUN4DXhjmqJj013pdliYj4hMKIiB8Is9uYmpEGcFYgqd6fmpGm+UZEJCi5HUbWrVtHRkYGrVq1wmazsXTp0nOev3jxYgYOHEjLli2Ji4ujV69erFq1ytN6RYLW4M7JzBzZnSRH7UcxSY5oZo7srnlGRCRouT3p2fHjx+nSpQvjxo3j9ttvP+/569atY+DAgTzzzDM0a9aM2bNnk5GRweeff063bt08KlokWA3unMzAtCTNwCoiIcVmGIbHExfYbDaWLFnCsGHD3Hpdp06dGD58OE8++WSDzi8pKcHhcFBcXExcXJwHlYqIiIivNfT+7fPp4F0uF6WlpcTH198Rr6KigoqKipr9kpISX5QmIiIiFvB5GHnuuec4fvw4d955Z73nTJ8+nWnTpnm1Di1GJp7SZ0dEpHH5NIwsWLCAp556imXLlpGQkFDveVOmTGHy5Mk1+yUlJaSkpDRaHVqMTDylz46ISOPz2dDeRYsWMX78eN58800GDBhwznOjoqKIi4urtTUWLUYmntJnR0TEO3wSRhYsWMDYsWOZP38+Q4YM8cVb1kmLkYmn9NkREfEet8PIsWPHyMrKIisrC4CcnByysrLIzc0FzEcso0ePrjl/wYIFjB49mueee46ePXuSn59Pfn4+xcXFjfMbuEGLkYmn9NkREfEet8PI5s2b6datW80cIZMnT6Zbt241w3Tz8vJqggnAP//5T6qqqnjggQdITk6u2R5++OFG+hUaTouRiaf02RER8R63O7Bef/31nGtqkjlz5tTaX7Nmjbtv4TVajEw8pc+OiIj3hNTaNFqMTDylz46IiPeEVBjRYmTiKX12RES8J6TCCGgxMvGcPjsiIt5xQWvT+Io31qbRLJriKX12REQaxm/XpvEXYXYbvTo0t7oMCUD67IiINK6Qe0wjIiIi/kVhRERERCylMCIiIiKWUhgRERERSymMiIiIiKUURkRERMRSCiMiIiJiKYURERERsZTCiIiIiFhKYUREREQspTAiIiIillIYEREREUspjIiIiIilFEZERETEUgojIiIiYimFEREREbGUwoiIiIhYSmFERERELKUwIiIiIpZSGBERERFLKYyIiIiIpRRGRERExFLhVhcgDWAYUF4MJQeh5ID574kfzGMVJea/J8vAcILLCYbL3MIiIKIJRMSY/0Y2hZgW0LSluV3UEuJam1/bbFb/liIiEqIURvyJywU/5EBBNhz+Fg5/Z/5blAMnj3nvfSNi4OJ2p7ZUSLgSEtOg5ZUQGeO99xUREUFhxFonjsL+L05tm+HAZrOVoz5N4s2WjLhWENMcouMg2gFRcWarhz0MbGGn/rWD8yRUnoDKMqgsN1tRygrh+GE4VmD+W5pvfr8g29xqsUHzDpDcBdr8BNqkQ9JVEB7pzasiIiIhRmHEl5xVZuDY/Qns/tj82nDVPic8Glp2NLeEU/82v9QMIWe0UjhdBpk5RRSUlpMQG016ajxhdg8etVRVQPF+s0Xmh71QuBsOfWNuZUeg8Htz2/7O6fpadYN2faH99WZIUTgREZELYDMMw7C6iPMpKSnB4XBQXFxMXFyc1eU0SHVYOHL0KJeVZHJ50cfYd66Cih+1fMS3N1sc2lxj3tgTO5l9Pc5h5fY8pi3PJq+4vOZYsiOaqRlpDO6c3Hi/xLECyP8aDmw91XqTafZVOVNEDLTtA5f+DK64yXzUIyIiQsPv3wojXrDqq1w+fncuP61YS3/7NpraKk5/s8nFZotCh/7Q/gZoluLWz165PY+Jc7fy4/9o1W0iM0d2b9xAcibDMFtOcjfCnrWwZ43ZenKmhDS44mZza91dHWNFREKYwogVDn9Hzgczid35Di1sJTWH9xstWOn8CSud6dw74k4GX9XGox/vdBn89NmPa7WInMkGJDmi2fDb/p49snGXy2X2M9nzCexcBf/ZaI7oqdbsEuh8O3S+w2zxUTAREQkpCiO+4qyEb5ZC5r/MxxinFBjNWOLsw3vOnnxltAdsFxwWNu0u5O6XPzvveQt+2ZNeHZq7/fMvWFkR7FoN360w/608fvp7LTvCVb+AriPMDrgiIhL0Gnr/VgdWT534AbbMgc//BaUHATBsYayu6sqbzuv5xNUVJ2G1XmIAecXlZOYUeRQWCkrrbhHx9LxGFxMPXYab28ky2LnS7Pi66wNziPLHf4BP/gcuHQjdRsLlg9X5VUREFEbcVnIQNvwVtr1hDokFaJoA6b9kVdQgJiw9cN4f4WlYSIiNbtTzvCoyBjrfZm4njsKO5ZA13+xvsmuVuTVtCd1GwU/Gg8OzR1ciIhL4FEYaqiQPNvyf2RriPNUhNfEq6HW/2S8iPArH7kLg/GHE07CQnhpPsiOa/OLyszqwwuk+I+mp8R79fK9p0gy6jzK3I7vMIJe1AI4XwIbn4dO/QcchcO195sgc9S0REQkp6jNyPscKYP1zsHn26RBySW/o9xtzVMwZN87qDqbnCwsX0sG0ejQNUOs9fDKapjE5K82+JZkvw971p48ndobeD5ktKucZ4iwiIv5NHVgvVGU5fPYSrH/+9FTsKT3hhimQ2q/ev959ERZ8Ns+Irxz6xuwA/OUiqDphHnOkQK8HoPtoc3ZZEREJOAojnjIMs9Plh9OgONc81qob/GzqWS0h9fFFWGi0GVj9SVkRbJ4Fn//DnKoezHlZet4P104wp78XEZGAoTDiifzt8N5k2Pe5uR/X2gwhV/0C7Ha3flRQhgVfqTwBXy6AT18wp6kHM5T0fgjSfwVRF1lbn4iINIjCiDtOHoe1z8LGF81JuyJi4KePQK8HtWqtlVxO+GYJrPkTFO4yj8U0hz6T4Cf36r+NiIifUxhpqF0fwnuPwNFTj2SuzIDBz4KjdeO+j3jO5YSv34a1f4KiPeaxpgnw00lwzXiI8IOhzCIichaFkfMxDFhyH3y1yNyPawND/tdc7E38k7MKvn7TbMX6Ya95zHEJDJhqDq/WkGAREb/S0Pu3ex0hgonNBrFJYLObj2Me+FxBxN+FhZvTyT+4GTJegNhWZifjd8bDKwMg9/xT5YuIiP8J3ZYRMPuKFH4PyV0a72eK75wsg00vmZPRVa+Dk3Yrzv5PkVnsUOdhERGL6TGNhI7SQ+aaN9veAMNFJeHMqRrE36pu4xgxgT0Hi4hIANNjGgkdsYkw9AU2DFjCWufVRFDFL8NX8HHUowy1byS/+AQT525l5fY8qysVEZE6KIxIUHC6DB5b52RM5eOMOflb9riSSLAd5YXIF5kX8T90sB1g2vJsnC6/bwgUEQk5CiMSFDJzimpmvF3r6sLgk8/yv5W/oNyIoHdYNisiH2fU8Tls3rnf4krFXzldBpt2F7Is6wCbdhcquIr4kFbtlaBQUFpea/8kEbzo/DlLXX14Kvw1BoRt4/7wdylb9gXwnLlKsMgpQbfek0iAUcuIBIWE2LonPttvJHBv5WPce/LX7DdaEHMiDxaOgDfHmCsyS8irXtzyzCACkF9crr5GIj6iMCJBIT01nmRHNPUN4P3I1YORUX/H1ecRsIVB9lJ4KR2+etOcAE9CktNlMG15NnV9AqqPqa+RiPcpjEhQCLPbmJqRBnBWIKnef3xoN+wDn4JffgyJV8GJH2DxL2H+cCg+4MtyxU+c2deoLgaQV1xOZk6R74oSCUEKIxI0BndOZubI7iQ5aj+ySXJEM3Nk99PP/lt1hV99Av1/B2GRsGsVzOgJW+aolSTE/Liv0YWeJyKeUQdWCSqDOyczMC2JzJyic8/AGhYB1z0GHTNg2QNwYDMsf9hcJfjWGVooMUTU19fI0/NExDNqGZGgE2a30atDc27t2ppeHZqfeyr4hI4w/gO48RkIbwJ71sDMXuYqwRL0ztfXyIY5qiY9Nd6XZYmEHIUREXsY9HoAJmyAVt2hvNhcfO+de81+JRK0GtLXaGpGmtY2EvEyhRGRai0uNVtJ+j1ujrj5+i2Y2cdsLZGg1eC+RiLiNVooT6Qu+zebI22K9pj7PR+Anz0JEeo7EKycLuP8fY1ExC1atVfkQp08DquegC2zzf3EznDHbGh5ubV1iYgECK3aK3KhIptCxl9hxJsQ0wIObYd/9YNt8zQEWESkESmMiJzP5TfCxE8h9TqoLINl98OS+6Ci1OrKRESCgsKISEPEJsGopeZEaTY7fLUI/tkP8r60ujIRkYCnMCLSUPYwc6K0sSsgrjUU7YZXBsDn/9RjGxGRC6AwIuKutr3MOUmuuBmcJ+H938BbY/XYRkTEQwojIp6IiYe75sPgP4E9wlwF+F83QMG3VlcmIhJw3A4j69atIyMjg1atWmGz2Vi6dOk5z8/Ly2PEiBFcccUV2O12Jk2a5GGpIn7GZoOeE2HcCohtBYW74OX+mkpeRMRNboeR48eP06VLF1588cUGnV9RUUHLli154okn6NKli9sFivi9lHS4b92p0TbHzank3/8tVJ20ujIRkYBwQZOe2Ww2lixZwrBhwxp0/vXXX0/Xrl3561//6tb7aNIzCQguJ3z8R9jwvLmfci38Yg7EtbK0LBERqwT0pGcVFRWUlJTU2kT8nj0MBkw1+5JEOWDf5/DP6+A/G62uTETEr/llGJk+fToOh6NmS0lJsbokkYbrOAR+9Yk5ffzxw/BaBnzxqtVViYj4Lb8MI1OmTKG4uLhm27dvn9UlibineQdzBeBOPwdXFbw3GZZPUj8SEZE6hFtdQF2ioqKIioqyugyRCxPZ1FxYL+kq+OgP5oJ7h7+FO9+Ai1paXZ2IiN/wy5YRkaBhs0HfX8OIRRAVB7mb4F/Xw8EsqysTEfEbboeRY8eOkZWVRVZWFgA5OTlkZWWRm5sLmI9YRo8eXes11ecfO3aMw4cPk5WVRXZ29oVXLxIoLr8RfvkxNL8USvbDrMGaj0RE5BS3h/auWbOGG2644azjY8aMYc6cOYwdO5a9e/eyZs2a029is511ftu2bdm7d2+D3lNDeyVonDgKi38Juz4w9/s9Dtc/bragiIgEmYbevy9onhFfURiRoOJywkfT4NO/mfud74BbX4KIaGvrEhFpZAE9z4hIULOHwcCnYeiLYA+H7W+bw3+PHba6MhERSyiMiFil+ygYtQSim8H+THilvxbaE5GQpDAiYqXU6+DeD+HiVDiaC68OhO8/sroqERGfUhgRsVqLy8yRNm37QEUJzPsFfPGK1VWJiPiMwoiIP4iJNx/ZdBkBhhPe+zWsnGJ2dhURCXIKIyL+IjwKhs2A/r839z+bAQtHwMnj1tblBqfLYNPuQpZlHWDT7kKcLr8frCcifsAvp4MXCVk2G1z3qLm2zZIJsHMlzLkFRrzp91PIr9yex7Tl2eQVl9ccS3ZEMzUjjcGdky2sTET8nVpGRPxRp5/DmH9Dk3g4uNXs2Fq42+qq6rVyex4T526tFUQA8ovLmTh3Kyu351lUmYgEAoUREX+V8hMYvxqatYUfcuDVQbB/i9VVncXpMpi2PJu6HshUH5u2PFuPbESkXgojIv6sxaXm0N/krlB2BF67BXausrqqWjJzis5qETmTAeQVl5OZU+S7okQkoCiMiPi7ixJg7Htw6QCoLIMFd8OW16yuqkZBaf1BxJPzRCT0KIyIBIKoi+DuhdD1HnPo7/KH4JNnwA+WlkqIbdiaOg09T0RCj8KISKAIizAX1LvuN+b+2mfh3QfBWWlpWemp8SQ7oqlv3WEb5qia9NR4X5YlIgFEYUQkkNhs0P8JuOX/wGaHbXPNxzYWzkUSZrcxNSPNLO9H36ven5qRRpi9vrgiIqFOYUQkEF3zX3DXfAhvAt+vhteHQZl1HUQHd05m5sjuJDlqP4pJckQzc2R3zTMiIudkMww/eOh8HiUlJTgcDoqLi4mLi7O6HBH/se8LmHcHlB+FhDQYuRjirLvxO10GmTlFFJSWkxBrPppRi4hI6Gro/VthRCTQHcqGN34Ox/Kh2SUwaqk5g6uIiMUaev/WYxqRQJeYBuNXQXx7OJoLswZD3ldWVyUi0mAKIyLB4OJ28F+rIPEqOF4Ac4bAfzZaXZWISIMojIgEi4sSYNx7cElvqCgxH918t9LqqkREzkthRHxOy8x7UbQDRi2Gy2+CqnJYOAK+XGh1VSIi5xRudQESWrTMvA9ENIHhb8CyB+GrhbDkPnPYb6/7ra5MRKROahkRn9Ey8z4UFgHDZkLPUwFk1RRY86xfTB8vIvJjCiPiE1pm3gJ2O9z4DNzwO3N/zTOw+vcKJCLidxRGpE6N3a9Dy8xbxGaDfo/BjdPN/Y1/h/d+DS6XtXWJiJxBfUbkLN7o16Fl5i3W636IbArLH4bNr0JlGQx9EcL0fwEiYj21jEgt3urXoWXm/UCPMXD7K2ALgy8XwNvjoOqk1VWJiCiMyGne7NehZeb9xFV3mCNtwiJhx7vm0N/KE1ZXJSIhTmFEanizX4eWmfcjHYfAiEWnV/yd9wuoKLW6KhEJYQojUsPb/Tq0zLwf6dDfnBwtMhb2rjdnaz3xg9VViUiIUu81qeGLfh2DOyczMC1Jy8z7g7a9Ycy7MPc22P8FvJZhrvjbtIXVlYlIiFHLiNTwVb+OMLuNXh2ac2vX1vTq0FxBxEqtu8PY96BpAuR/DXNugWMFVlclIiFGYURqqF9HiErsBOPeh9hkOLzDXPG3NN/qqkQkhCiMSC3q1xGiWlxqtpDEtYEjO81AUnLQ6qpEJETYDMP/54YuKSnB4XBQXFxMXFyc1eWEBKfLUL+OUPTDXpiTAcW5cHEqjFkOzVKsrkpEAlRD798KIyJS29FcszPrD3uh2SUw5t9wcVurqxKRANTQ+7ce04hIbc0ugbErIL6DGUxm3wxFe6yuSkSCmMKIiJzN0drsQ9LicijZD7OHwJHvra5KRIKUwoiI1C0u2QwkLTtC6UGzU+vhnVZXJSJBSGFEROp3UYIZSBI6wbF8mHMzHMq2uioRCTIKIyJybk1bmKNqkq6C44fhtVvMCdJERBqJwoiInF/T5jD6XUjuCmWF5mibg1lWVyUiQUJhREQaJiYeRi+D1teYi+q9fivkfWl1VSISBBRGRKThmjSDUUugzU+g/OipQPKV1VWJSIBTGBER90THwch3zmghGao+JCJyQRRGRMR90Q4YtRha9zADyWtDIX+71VWJSIBSGBERz0Q7YORiaNUdThSZLSSHvrG6KhEJQAojIuK56j4krbqdHmWjeUhExE0KIyJyYaoDyZnDfhVIRMQNCiMicuGaXAyjl54KJEfMQFKww+qqRCRAKIyISOOoCSRdzggk31pdlYgEAIUREWk8TS6GUUsh6epTU8dnwOHvrK5KRPycwoiINK7qmVqTroLjBTDnFq32KyLnpDAiIo0vJt5cyybxVCB5TYFEROqnMCIi3lHdQpLYGY4dMgPJkV1WVyUifkhhRES8p3q134ROZiCZcwsU7ra6KhHxMwojIuJdTZvDmHchIQ2O5ZudWn/Ya3VVIuJHFEZExPuatjBbSFpcASUHYE4GHN1ndVUi4icURkTENy5qabaQxHeA4lyzD0nJQaurEhE/oDAiIr4TmwRjlsPF7cxHNa9lQOkhq6sSEYspjIiIbzlam4HEkQKF35ur/R4/YnVVImIhhRER8b1ml5iBJLYVHP4WXr8VyoqsrkpELKIwIiLWiE81A8lFiXBoO7wxDE4ctboqEbGAwoiIWKfFpeYom5gWkPclzL0NykusrkpEfExhRESsldDRHGXTJB4ObIF5d0DFMaurEhEfUhgREesldoLRSyHaAfs+h/nD4WSZ1VWJiI8ojIiIf0juAqOWQFQc/GcDLLwbKk9YXZWI+IDCiIj4j9Y94J63IaIp7FkDi0ZCVYXVVYmIl7kdRtatW0dGRgatWrXCZrOxdOnS875m7dq19OjRg+joaNq3b88//vEPT2oVkVBwybVwz1sQ3gS+/xDeHANVJ62uSkS8yO0wcvz4cbp06cKLL77YoPNzcnK4+eab6du3L9u2beO///u/eeihh3jnnXfcLlZEQkS7PjBiIYRHw8734Z3x4KyyuioR8RKbYRiGxy+22ViyZAnDhg2r95zf/va3vPvuu+zYsaPm2IQJE/jyyy/ZtGlTg96npKQEh8NBcXExcXFxnpYrIoHm+w9hwd3gPAmdb4fbXgZ7mNVViUgDNfT+7fU+I5s2bWLQoEG1jt14441s3ryZyspKb7+9iASySwfAnW+APQK2vwPLHgCXy+qqRKSReT2M5Ofnk5iYWOtYYmIiVVVVHDlS93oUFRUVlJSU1NpEJERdMRh+MRtsYfDlAvj3wwokIkHGJ6NpbDZbrf3qJ0M/Pl5t+vTpOByOmi0lJcXrNYqEAqfLYNPuQpZlHWDT7kKcLo+f0vrWlRlw+8tgs8PW12HFo+D5E2YR8TPh3n6DpKQk8vPzax0rKCggPDyc5s2b1/maKVOmMHny5Jr9kpISBRKRC7Ryex7TlmeTV1xecyzZEc3UjDQGd062sLIG6ny72Yl1yX2w+VUIj4Ibn4F6/qgRkcDh9ZaRXr16sXr16lrHPvjgA6655hoiIiLqfE1UVBRxcXG1NhHx3MrteUycu7VWEAHILy5n4tytrNyeZ1FlbuoyHIb+3fz6sxnw4VS1kIgEAbfDyLFjx8jKyiIrKwswh+5mZWWRm5sLmK0ao0ePrjl/woQJ/Oc//2Hy5Mns2LGDWbNm8eqrr/Loo482zm8gIufkdBlMW55NXbfs6mPTlmcHziOb7qNgyPPm15/+DT55xtp6ROSCuR1GNm/eTLdu3ejWrRsAkydPplu3bjz55JMA5OXl1QQTgNTUVFasWMGaNWvo2rUrf/jDH3jhhRe4/fbbG+lXEJFzycwpOqtF5EwGkFdcTmZOke+KulA/GQ+DnzW/XvdnWPcXa+sRkQvidp+R66+/nnNNTTJnzpyzjvXr14+tW7e6+1Yi0ggKSusPIp6c5zd6TgBnBax+Ej7+I4RFQZ+HrK5KRDygtWlEglxCbHSjnudX+jwMN/zO/Hr17+EzLTUhEogURkSCXHpqPMmOaOobc2LDHFWTnhrvy7IaT7/H4LrHzK9X/hY2z7K2HhFxm8KISJALs9uYmpEGcFYgqd6fmpFGmD2Ah8je8AT0PvWI5t+PwLa51tYjIm5RGBEJAYM7JzNzZHeSHLUfxSQ5opk5sntgzDNyLjYbDHwarp1o7i97EL5609qaRKTBvD7pmYj4h8GdkxmYlkRmThEFpeUkxJqPZgK6ReRMNhsMnm52at08y5wcLSwCOv3c6spE5DwURkRCSJjdRq8Odc98HBRsNrj5OXOV321z4Z17ISwSOg6xujIROQc9phGR4GK3Q8YLcPVwcFXBm2Ng5wdWVyUi56AwIiLBxx4Gt84wH9G4KmHRSPj+I6urEpF6KIyISHAKC4fbXoaOt5j9SBaOgJz1VlclInVQGBGR4BUWAXfMhstuhKpymD8ccj+zuioR+RGFEREJbuGRcOfr0KE/VB6HuXfA/s1WVyUiZ1AYEZHgFxENw+dBu75wshTeuA0OZlldlYicojAiIqEhMgbuXggpPaGiGN4YBvnbra5KRFAYEZFQEnUR3PMWtL4GTvwAr98KBd9aXZVIyFMYEZHQEh0HI9+B5C5QdgReHwpHvre6KpGQpjAiIqGnSTMYtRQSO8OxQ/BaBhTlWF2VSMhSGBGR0BQTbwaSlh2h9CC8NhSO5lpdlUhIUhgRkdB1UUsY/S40vxSKc80WkpKDVlclEnIURkQktMUmwpjlcHE7+GGvGUhK862uSiSkKIyIiMS1MgOJIwUKvzdH2Rw/YnVVIiFDYUREBKDZJWYgiW0Fh781A0lZkdVViYQEhRERkWrxqWYguSgRDm03J0Y7cdTqqkSCnsKIiMiZWlxqdmqNaQF5X8Lc26G8xOqqRIKawoiIyI8ldITRy6DJxXBgM8y/EyqOWV2VSNBSGBERqUtSZ3MekigH5G6CBXfByTKrqxIJSgojIiL1adUVRi2GyFjYux4WjoDKE1ZXJRJ0FEZERM6lzTUw8m2IaAp7PlEgEfEChRERkfO5pKe52m9EU9j9MSy8ByrLra5KJGgojIiINES7PqcCSQzs/ggWKZCINBaFERGRhjozkHz/ISwaqUAi0ggURkRE3NHupzDizVOBZDW8OQqqKqyuSiSgKYyIiLgrta8ZSMKbwK4PzBYSBRIRjymMiIh4IrUv3HNmIFELiYinFEZERDyVeh2MWATh0bBrFbw5WoFExAMKIyIiF6J9v9OBZOdKeHOMAomImxRGREQuVPvr4e6FpwLJ+6cCyUmrqxIJGAojIiKNocMNcPeC04HkLQUSkYZSGBERaSwd+sNd8yEsCr5bAW+NVSARaQCFERGRxnTpz8wWkrAo+O49eHucAonIeSiMiIg0tkt/BnefaiH59t+nWkjUqVWkPgojIiLecOmA04Hku/c0dbzIOSiMiIh4y6UDTg37PTUx2sK7ofKE1VWJ+B2FERERb+pww6nF9ZrC7o9h/p1w8rjVVYn4FYURERFvS+0LI9+ByIsgZx3MvQMqSq2uSsRvKIyISMBwugw27S5kWdYBNu0uxOkyrC6p4dr2glFLISoOcjfC3NuhvMTqqkT8QrjVBYiINMTK7XlMW55NXvHpTqDJjmimZqQxuHOyhZW5IeUnMHoZvDEM9n1u/jtyMTRpZnFhItZSy4iI+L2V2/OYOHdrrSACkF9czsS5W1m5Pc+iyjzQujuMWQ5NLoYDW+D1oVBWZHVVIpZSGBERv+Z0GUxbnk1dD2Sqj01bnh1Yj2ySu8CYf0NMC8j7El4bCsePWF2ViGUURkTEr2XmFJ3VInImA8grLiczJ8BaF5I6w9j3oGkCHPoaXsuAYwVWVyViCYUREfFrBaUNmyisoef5lYSOMG4FxCZDQTbMGQKl+VZXJeJzCiMi4tcSYqMb9Ty/0+Iys4Ukrg0c2Qmzb4KjuVZXJeJTCiMi4tfSU+NJdkRjq+f7NsxRNemp8b4sq3E17wDj3oNmbaFoD8y6CQp3W12ViM8ojIiIXwuz25iakQZwViCp3p+akUaYvb64EiAubgfj3ofml0HJfpg1GA59Y3VVIj6hMCIifm9w52RmjuxOkqP2o5gkRzQzR3YPnHlGzsfR2gwkiVfB8QKzD8mBLVZXJeJ1NsMw/H48XElJCQ6Hg+LiYuLi4qwuR0Qs4nQZZOYUUVBaTkKs+Wgm4FtE6nLiB5j3C9j/BUTGmovttetjdVUibmvo/VthRETEH1WUwoK7Ye96c9Xfu+aaqwCLBJCG3r/1mEZExB9FxZqr/V42CKpOwPy7YMdyy8oJ6HWBxO+pZURExJ9VnYTFv4TspWALg2Ezoctwn5YQFOsCiSXUMiIiEgzCI+H2V6HrPWA4Ycl98MWrPnv7oFoXSPyWwoiIiL8LC4ehL0L6rwAD3psMa/8CXm7YDsp1gcQvKYyIiAQCux1u+jNc95i5/8kfYeUUcLm89pZBuy6Q+B2FERGRQGGzQf/fweA/mfufz4SlE8BZ6ZW3C+p1gcSvKIyIiASanhPh5/8Cezh8tQgW3gMnyxr9bYJ+XSDxGwojIiKBqMtwuGuBOQfJrlXwxs/NydIaUUisCyR+QWFERCRQXT4IRi+FaAfs+wxmD4HS/Eb78SGzLpBYTmFERCSQXdITxq6Ai5Kg4Bt4dVCjrvgbMusCiaU06ZmISDAoyjEf1fyQA00TYOQ7kHx1o/34kFkXSBqV1qYREQk1pYdg7u1w6Gtzgb275kL7662uSkKYZmAVEQk1sYkw7j1o+1M4WQpz74AvF1ldlch5eRRGZsyYQWpqKtHR0fTo0YP169ef8/yXXnqJK6+8kiZNmnDFFVfw+uuve1SsiIicR7QDRi2GTreBqxKW/ArWP+/12VpFLoTbYWTRokVMmjSJJ554gm3bttG3b19uuukmcnNz6zx/5syZTJkyhaeeeopvvvmGadOm8cADD7B8uXWrT4qIBLXwKHM9m14PmvsfTYP3fg0up7V1idTD7T4j1157Ld27d2fmzJk1x6688kqGDRvG9OnTzzq/d+/e9OnTh7/85S81xyZNmsTmzZvZsGFDg95TfUZERDz02Uxz2ngMuGII3P4KRMZYXZVPqfOtdRp6/w5354eePHmSLVu28Pjjj9c6PmjQIDZu3FjnayoqKoiOrj0krEmTJmRmZlJZWUlERESdr6moqKj1y4iIiAd6ToTYZFj8K/juPXh9KNy9CJo2t7oyn1i5PY9py7NrrbGT7IhmakaahiX7Ebce0xw5cgSn00liYmKt44mJieTn1z3Rzo033sgrr7zCli1bMAyDzZs3M2vWLCorKzly5Eidr5k+fToOh6NmS0lJcadMERE5U6dhpyZHawb7v4BXB5pDgYPcyu15TJy79azF/vKLy5k4dysrt+dZVJn8mEcdWG222s1bhmGcdaza73//e2666SZ69uxJREQEt956K2PHjgUgLCysztdMmTKF4uLimm3fvn2elCkiItXa9obxH4DjEijabQaSA1usrsprnC6DacuzqasfQvWxacuzcbrUsdcfuBVGWrRoQVhY2FmtIAUFBWe1llRr0qQJs2bNoqysjL1795Kbm0u7du2IjY2lRYsWdb4mKiqKuLi4WpuIiFygllfAvash6So4fhjm3AI7gnMwQWZO0VktImcygLzicjJzinxXlNTLrTASGRlJjx49WL16da3jq1evpnfv3ud8bUREBG3atCEsLIyFCxdyyy23YLdrmhMREZ+KTYJx70OHn0FlGSwaCRv+L+iG/haU1h9EPDlPvMvtNDB58mReeeUVZs2axY4dO3jkkUfIzc1lwoQJgPmIZfTo0TXn79y5k7lz57Jr1y4yMzO566672L59O88880zj/RYiItJwUbEw4k34yS/N/Q+fgmUPQtVJS8tqTAmx0ec/yY3zxLvcGk0DMHz4cAoLC3n66afJy8ujc+fOrFixgrZt2wKQl5dXa84Rp9PJc889x3fffUdERAQ33HADGzdupF27do32S4iIiJvCwmHI/0KLy2Dl45A111zXZvhciIm3uroLlp4aT7Ijmvzi8jr7jdgwF/tLTw383zUYaG0aEZFQt2s1vDXOnEI+vr3ZatLiMqurumDVo2mAWoGkeriFVh32Pq1NIyIiDXPZwDNG2uyBV34Ge9ZaXdUFG9w5mZkju5PkqP0oJskRrSDiZ9QyIiIipmMFsHCEOReJPRyGPA89xlhd1QXTDKzWaej9W2FEREROqyyHZQ/A9rfN/V4PwsCnwV73vFAi56LHNCIi4r6IaHP9muunmPubXoR5d0CZ5uMQ71EYERGR2mw2uP5xuGM2RMTA7o/h5f5wKNvqyiRIKYyIiEjdOt92umPrDznwyoCgnbFVrKUwIiIi9Uu6Cn61Btr1hcrj5oytnzwDLpfVlUkQURgREZFza9ocRi2Fayea+2ufhUX3QHmJpWVJ8FAYERGR8wsLh5v+BMNmQlgUfLfC7EdSsMPqyiQIKIyIiEjDdR0B//U+xLWGwl1mIPnqLaurkgCnMCIiIu5p3QPuWwftrzdX/l18L7z3KFRVWF2ZBCiFERERcV/TFjByMVz3mLn/xcsw+yY4us/auiQgKYyIiIhn7GHQ/3fmwnrRzeDAFvjndfD9R1ZXJgFGYURERC7M5Teaj22Su8KJIph7O3z8P+CssroyCRAKIyIicuEubgv/tQp6jAMMWPdneC0DivdbXZkEAIURERFpHBHRkPFXuP1ViIyF3I0wsw98+57VlYmfUxgREZHGddUdMGEdtOoO5Udh4QhY8Zi5IrBIHRRGRESk8cW3Nx/b9P5/5n7mv8y1bY7ssrYu8UsKIyIi4h3hkTDoj3DP2xDTAg59bY622TwbDMPq6sSPKIyIiIh3XTYQJn4Kqf3MSdL+PQnmD4fSQ1ZX1iicLoNNuwtZlnWATbsLcboUtNxlMwz/j6clJSU4HA6Ki4uJi4uzuhwREfGEywWfzYCPngZnBTSJNzu8pt1qdWUeW7k9j2nLs8krPt0fJtkRzdSMNAZ3TrawMv/Q0Pu3WkZERHxAfz0Ddjv0fhB+tQaSrjLnJHlzNCyZAOXFVlfntpXb85g4d2utIAKQX1zOxLlbWbk9z6LKAo9aRkREvEx/Pdeh6iSsmQ6f/hUMF8S1gWEzoH0/qytrEKfL4KfPfnxWEKlmA5Ic0Wz4bX/C7DbfFudH1DIiIuIH9NdzPcIjYcBUGPc+XNwOSvbD60Ph349AeYnV1Z1XZk5RvUEEwADyisvJzCnyXVEBTGFERMRLnC6Dacuzqav5ufrYtOXZofnIptolPWHCp9BjrLm/eRbM6Ak7V1la1vkUlDZszpSGnhfqFEZERLxEfz03UNRFkPE3GP3uqVaSAzD/TnjnXjh+xOrq6pQQG92o54U6hRERES/RX89uat8PJm6CXg+CzQ5fvwUvpcPXb/vdvCTpqfEkO6KprzeIDbNfUHpqvC/LClgKIyIiXqK/nj0QGQM3/g/c+yEkdIKyQnhnvDkvSVGO1dXVCLPbmJqRBnBWIKnen5qRFtKdV92hMCIi4iX66/kCtO5hDgG+4QmwR8CuVWZfkjXP+s0aN4M7JzNzZHeSHLXDZJIjmpkju4fuSCkPaGiviIgXVY+mAWp1ZK0OKLppNcDhnbDiUchZa+5f3A5u+gtcPsjSsqo5XQaZOUUUlJaTEGuGS7WImBp6/1YYERHxMs0z0ggMA75ZAqv+G0pPDYe+YggMng4Xt7W2NqmXwoiIiB/RX8+NpKIU1v7ZnFbeVQXh0dBnkrk6cNRFVlcnP6IwIiIiwavgW/PRzd715v5FiWb/km4jwR5mbW1SQzOwiohI8EroCGOWwy/mmH1Ijh2C5Q/BzD6wa7XfDQWWc1MYERGRwGSzQaefwwOZcON0iG4Gh3fAvDvg9Vsh7yurK5QGUhgREZHAFh4Fve6Hh7PMviNhkebIm39eB2//Fxz+zuoK5TzUZ0RERILLD3vhoz/A9rdPHbBB59uh32+g5RVWVuZ3vN2xWh1YRUQktOV9BWufhW//feqADa66A677DbS83NLS/IEvhpwrjIiIiMDZocRmN1tK+kyCpM6WlmaV6sn4fhwAGnsyPo2mERERAUi+Gu6aB/etg463gOEyF+H7Rx944zbY/UlIjb5xugymLc8+K4jA6VmCpy3Pxuny3TVRGBERkdCQ3OV0KOn0c7OFZPdH8MYws7PrlwuhqsLqKr0uM6eo1qOZHzOAvOJyMnOKfFaTwoiIiISW5C7m/CT/byuk3wcRMZD/FSy5D55Pgw+nwdF9VlfpNQWlDVtosKHnNQaFERERCU3xqXDzn+GRb6D/7yCuNZQdgQ3Pw9+uhgUjYOcqcFZZXWmjSoiNPv9JbpzXGBRGREQktMXEw3WPwcNfwZ1vQOp1Zr+S796D+XfC/3WC1VPhyC6rK20U6anxJDuiqW8Arw1zVE16arzPatJoGhERkR87/B1smQNfLYKywtPHW18DnW+DtGHgaG1VdResejQNUKsjq1WjaRRGRERE6lN1Enatgm1zT6154zz9vUt6QafboOOQgAwmmmfETQojIiJiudJDkL0MvlkMuZtqfy/pKrj8JrhiMCR3A3tg9ILQDKxuUBgRERG/UrwfvlkKO96FfZnUetgR0wJS+5p9T1L7QXx7c1G/EKQwIiIi4gvHj8CuD+C792H3x3DyWO3vx7WGlHSzv0mba8yhxRFNrKnVxxRGREREfK3qJBzYAjnrzG1/JjhP1j7HHg4tr4SEKyGhIySkQcuO4EiBsHDv1+hywdG9ULADCrLhULb59a0vmmGpETX0/u2D31pERCREhEdC217mdv1v4WQZ7P8CDmyG/VvMr48XwKGvze1MtjCzI2yztuYW1wpimp/a4s0toqn5HuHREB5lvsZVZW7OSjP4VJTAiaNw4gdzO34YjuZC8T7z8VLxfqiqY0Kz/K8bPYw0lMKIiIiIt0TGQPt+5gbmGjjF+yB/Oxzecap14ls48p0ZJI7mmhvrvVtXWJS5cnFCJ7OFJrETtOru3fc8B4URERERX7HZoNkl5tbx5tPHXS44ln86jBzNhdI8c46TskIoKzL/rTxhhpbKE/Djpe7sERAWAVFx0KQZNLnY3GLizUdAjhRolnL6a188Emog/6lEREQkVNnt5mOZuFZwSc/zn28Ypx/P2CPAHhbQI3YURkRERAKNzWa2goRFWF1JowiMWVlEREQkaKllREQkCHh7Jk0Rb1IYEREJcL5YY0TEm/SYRkQkgFWvvnpmEAHILy5n4tytrNyeZ1FlIg2nMCIiEqCcLoNpy7N/PMATOD3oc9rybJwuv59oW0KcwoiISIDKzCk6q0XkTAaQV1xOZk6R74oS8YDCiIhIgCoorT+IeHKeiFUURkREAlRCbHSjnidiFYUREZEAlZ4aT7IjmvoG8NowR9Wkp8b7siwRtymMiIgEqDC7jakZaQBnBZLq/akZaZpvJMA5XQabdheyLOsAm3YXBmWHZM0zIiISwAZ3TmbmyO5nzTOSpHlGgkKozCFjMwzD7yNWSUkJDoeD4uJi4uLirC5HRMTvaAbW4FM9h8yPb9LV/1Vnjuzu94GkofdvtYyIiASBMLuNXh2aW12GNJLzzSFjw5xDZmBaUlCETo/6jMyYMYPU1FSio6Pp0aMH69evP+f58+bNo0uXLsTExJCcnMy4ceMoLCz0qGAREZFgF2pzyLgdRhYtWsSkSZN44okn2LZtG3379uWmm24iNze3zvM3bNjA6NGjGT9+PN988w1vvfUWX3zxBffee+8FFy8iIhKMQm0OGbfDyPPPP8/48eO59957ufLKK/nrX/9KSkoKM2fOrPP8zz77jHbt2vHQQw+RmprKT3/6U+677z42b958wcWLiIgEo1CbQ8atMHLy5Em2bNnCoEGDah0fNGgQGzdurPM1vXv3Zv/+/axYsQLDMDh06BBvv/02Q4YMqfd9KioqKCkpqbWJiIiEilCbQ8atMHLkyBGcTieJiYm1jicmJpKfn1/na3r37s28efMYPnw4kZGRJCUl0axZM/7+97/X+z7Tp0/H4XDUbCkpKe6UKSIiEtBCbQ4Zjzqw2my1f3nDMM46Vi07O5uHHnqIJ598ki1btrBy5UpycnKYMGFCvT9/ypQpFBcX12z79u3zpEwREZGAVT2HTJKj9qOYJEd0QAzrdYdbQ3tbtGhBWFjYWa0gBQUFZ7WWVJs+fTp9+vThscceA+Dqq6+madOm9O3blz/+8Y8kJ599MaOiooiKinKnNBERkaAzuHMyA9OSgn4OGbdaRiIjI+nRowerV6+udXz16tX07t27zteUlZVht9d+m7CwMMBsUREREZH6Vc8hc2vX1vTq0Dzoggh48Jhm8uTJvPLKK8yaNYsdO3bwyCOPkJubW/PYZcqUKYwePbrm/IyMDBYvXszMmTPZs2cPn376KQ899BDp6em0atWq8X4TERERCUhuz8A6fPhwCgsLefrpp8nLy6Nz586sWLGCtm3bApCXl1drzpGxY8dSWlrKiy++yK9//WuaNWtG//79efbZZxvvtxAREZGApbVpRETEUlpXJ3hpbRoREfF7obIqrZybR0N7RURELlT1qrQ/XoMlv7iciXO3snJ7nkWVia8pjIiIiM+db1VaMFeldbr8vieBNAKFERER8blQW5VWzk1hREREfC7UVqWVc1MYERERnwu1VWnl3BRGRETE50JtVVo5N4URERHxuVBblVbOTWFEREQsEUqr0sq5adIzERGxTKisSivnpjAiIiKWql6VVkKXHtOIiIiIpRRGRERExFIKIyIiImIphRERERGxlMKIiIiIWEphRERERCylMCIiIiKWUhgRERERSymMiIiIiKUCYgZWwzAAKCkpsbgSERERaajq+3b1fbw+ARFGSktLAUhJSbG4EhEREXFXaWkpDoej3u/bjPPFFT/gcrk4ePAgsbGx2GyNt3hSSUkJKSkp7Nu3j7i4uEb7uXI2XWvf0HX2DV1n39B19g1vXmfDMCgtLaVVq1bY7fX3DAmIlhG73U6bNm289vPj4uL0QfcRXWvf0HX2DV1n39B19g1vXedztYhUUwdWERERsZTCiIiIiFgqpMNIVFQUU6dOJSoqyupSgp6utW/oOvuGrrNv6Dr7hj9c54DowCoiIiLBK6RbRkRERMR6CiMiIiJiKYURERERsZTCiIiIiFgq6MPIjBkzSE1NJTo6mh49erB+/fpznr927Vp69OhBdHQ07du35x//+IePKg1s7lznxYsXM3DgQFq2bElcXBy9evVi1apVPqw2sLn7ma726aefEh4eTteuXb1bYJBw9zpXVFTwxBNP0LZtW6KioujQoQOzZs3yUbWBy93rPG/ePLp06UJMTAzJycmMGzeOwsJCH1UbmNatW0dGRgatWrXCZrOxdOnS877G5/dCI4gtXLjQiIiIMF5++WUjOzvbePjhh42mTZsa//nPf+o8f8+ePUZMTIzx8MMPG9nZ2cbLL79sREREGG+//baPKw8s7l7nhx9+2Hj22WeNzMxMY+fOncaUKVOMiIgIY+vWrT6uPPC4e62rHT161Gjfvr0xaNAgo0uXLr4pNoB5cp2HDh1qXHvttcbq1auNnJwc4/PPPzc+/fRTH1YdeNy9zuvXrzfsdrvxt7/9zdizZ4+xfv16o1OnTsawYcN8XHlgWbFihfHEE08Y77zzjgEYS5YsOef5VtwLgzqMpKenGxMmTKh1rGPHjsbjjz9e5/m/+c1vjI4dO9Y6dt999xk9e/b0Wo3BwN3rXJe0tDRj2rRpjV1a0PH0Wg8fPtz43e9+Z0ydOlVhpAHcvc7vv/++4XA4jMLCQl+UFzTcvc5/+ctfjPbt29c69sILLxht2rTxWo3BpiFhxIp7YdA+pjl58iRbtmxh0KBBtY4PGjSIjRs31vmaTZs2nXX+jTfeyObNm6msrPRarYHMk+v8Yy6Xi9LSUuLj471RYtDw9FrPnj2b3bt3M3XqVG+XGBQ8uc7vvvsu11xzDX/+859p3bo1l19+OY8++ignTpzwRckByZPr3Lt3b/bv38+KFSswDINDhw7x9ttvM2TIEF+UHDKsuBcGxEJ5njhy5AhOp5PExMRaxxMTE8nPz6/zNfn5+XWeX1VVxZEjR0hOTvZavYHKk+v8Y8899xzHjx/nzjvv9EaJQcOTa71r1y4ef/xx1q9fT3h40P7PvVF5cp337NnDhg0biI6OZsmSJRw5coT777+foqIi9RuphyfXuXfv3sybN4/hw4dTXl5OVVUVQ4cO5e9//7svSg4ZVtwLg7ZlpJrNZqu1bxjGWcfOd35dx6U2d69ztQULFvDUU0+xaNEiEhISvFVeUGnotXY6nYwYMYJp06Zx+eWX+6q8oOHOZ9rlcmGz2Zg3bx7p6encfPPNPP/888yZM0etI+fhznXOzs7moYce4sknn2TLli2sXLmSnJwcJkyY4ItSQ4qv74VB+6dSixYtCAsLOythFxQUnJX4qiUlJdV5fnh4OM2bN/darYHMk+tcbdGiRYwfP5633nqLAQMGeLPMoODutS4tLWXz5s1s27aNBx98EDBvmoZhEB4ezgcffED//v19Unsg8eQznZycTOvWrWstlX7llVdiGAb79+/nsssu82rNgciT6zx9+nT69OnDY489BsDVV19N06ZN6du3L3/84x/Vet1IrLgXBm3LSGRkJD169GD16tW1jq9evZrevXvX+ZpevXqddf4HH3zANddcQ0REhNdqDWSeXGcwW0TGjh3L/Pnz9by3gdy91nFxcXz99ddkZWXVbBMmTOCKK64gKyuLa6+91lelBxRPPtN9+vTh4MGDHDt2rObYzp07sdvttGnTxqv1BipPrnNZWRl2e+3bVlhYGHD6L3e5cJbcC73WNdYPVA8be/XVV43s7Gxj0qRJRtOmTY29e/cahmEYjz/+uDFq1Kia86uHMz3yyCNGdna28eqrr2pobwO4e53nz59vhIeHGy+99JKRl5dXsx09etSqXyFguHutf0yjaRrG3etcWlpqtGnTxrjjjjuMb775xli7dq1x2WWXGffee69Vv0JAcPc6z5492wgPDzdmzJhh7N6929iwYYNxzTXXGOnp6Vb9CgGhtLTU2LZtm7Ft2zYDMJ5//nlj27ZtNUOo/eFeGNRhxDAM46WXXjLatm1rREZGGt27dzfWrl1b870xY8YY/fr1q3X+mjVrjG7duhmRkZFGu3btjJkzZ/q44sDkznXu16+fAZy1jRkzxveFByB3P9NnUhhpOHev844dO4wBAwYYTZo0Mdq0aWNMnjzZKCsr83HVgcfd6/zCCy8YaWlpRpMmTYzk5GTjnnvuMfbv3+/jqgPLJ598cs7/z/WHe6HNMNS2JSIiItYJ2j4jIiIiEhgURkRERMRSCiMiIiJiKYURERERsZTCiIiIiFhKYUREREQspTAiIiIillIYEREREUspjIiIiIilFEZERETEUgojIiIiYimFEREREbHU/wcKtEmOIrHYUQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# 创建随机数生成器并固定种子,保证每次运行结果一致\n", "rng = np.random.default_rng(27446968)\n", "\n", "# 在 [0, 1] 区间生成 20 个等距点,作为自变量\n", "x = np.linspace(0, 1, 20)\n", "\n", "# 生成因变量:基础信号为 cos(x),并叠加 [-0.3, 0.3] 区间的随机噪声\n", "y = np.cos(x) + 0.3 * rng.random(20)\n", "\n", "# 用 3 次多项式对带噪数据进行最小二乘拟合,返回多项式对象 p\n", "p = np.poly1d(np.polyfit(x, y, 3))\n", "\n", "# 构造更密集的横坐标,用于绘制光滑拟合曲线\n", "t = np.linspace(0, 1, 200)\n", "\n", "# 绘制原始数据点(圆点)和拟合曲线(实线)\n", "plt.plot(x, y, \"o\", t, p(t), \"-\")\n", "\n", "# 显示图形\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.11" } }, "nbformat": 4, "nbformat_minor": 4 }