{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Curve fitting\n\nDemos a simple curve fitting\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First generate some data\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n\n# Seed the random number generator for reproducibility\nrng = np.random.default_rng(27446968)\n\nx_data = np.linspace(-5, 5, num=50)\nnoise = 0.01 * np.cos(100 * x_data)\na, b = 2.9, 1.5\ny_data = a * np.cos(b * x_data) + noise\n\n# And plot it\nimport matplotlib.pyplot as plt\n\nplt.figure(figsize=(6, 4))\nplt.scatter(x_data, y_data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now fit a simple sine function to the data\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import scipy as sp\n\n\ndef test_func(x, a, b, c):\n return a * np.sin(b * x + c)\n\n\nparams, params_covariance = sp.optimize.curve_fit(\n test_func, x_data, y_data, p0=[2, 1, 3]\n)\n\nprint(params)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And plot the resulting curve on the data\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "plt.figure(figsize=(6, 4))\nplt.scatter(x_data, y_data, label=\"Data\")\nplt.plot(x_data, test_func(x_data, *params), label=\"Fitted function\")\n\nplt.legend(loc=\"best\")\n\nplt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.11" } }, "nbformat": 4, "nbformat_minor": 0 }