{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n# Demo text printing\n\nA example showing off elaborate text printing with matplotlib.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\nimport matplotlib.pyplot as plt\n\n\neqs = []\neqs.append(\n r\"$W^{3\\beta}_{\\delta_1 \\rho_1 \\sigma_2} = U^{3\\beta}_{\\delta_1 \\rho_1} + \\frac{1}{8 \\pi 2} \\int^{\\alpha_2}_{\\alpha_2} d \\alpha^\\prime_2 \\left[\\frac{ U^{2\\beta}_{\\delta_1 \\rho_1} - \\alpha^\\prime_2U^{1\\beta}_{\\rho_1 \\sigma_2} }{U^{0\\beta}_{\\rho_1 \\sigma_2}}\\right]$\"\n)\neqs.append(\n r\"$\\frac{d\\rho}{d t} + \\rho \\vec{v}\\cdot\\nabla\\vec{v} = -\\nabla p + \\mu\\nabla^2 \\vec{v} + \\rho \\vec{g}$\"\n)\neqs.append(r\"$\\int_{-\\infty}^\\infty e^{-x^2}dx=\\sqrt{\\pi}$\")\neqs.append(r\"$E = mc^2 = \\sqrt{{m_0}^2c^4 + p^2c^2}$\")\neqs.append(r\"$F_G = G\\frac{m_1m_2}{r^2}$\")\n\nplt.axes((0.025, 0.025, 0.95, 0.95))\n\nrng = np.random.default_rng()\n\nfor i in range(24):\n index = rng.integers(0, len(eqs))\n eq = eqs[index]\n size = np.random.uniform(12, 32)\n x, y = np.random.uniform(0, 1, 2)\n alpha = np.random.uniform(0.25, 0.75)\n plt.text(\n x,\n y,\n eq,\n ha=\"center\",\n va=\"center\",\n color=\"#11557c\",\n alpha=alpha,\n transform=plt.gca().transAxes,\n fontsize=size,\n clip_on=True,\n )\nplt.xticks([])\nplt.yticks([])\n\nplt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.11" } }, "nbformat": 4, "nbformat_minor": 0 }