43 lines
1.4 KiB
Plaintext
43 lines
1.4 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n# Normal distribution: histogram and PDF\n\nExplore the normal distribution: a histogram built from samples and the\nPDF (probability density function).\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\nimport scipy as sp\nimport matplotlib.pyplot as plt\n\ndist = sp.stats.norm(loc=0, scale=1) # standard normal distribution\nsample = dist.rvs(size=100000) # \"random variate sample\"\nplt.hist(\n sample,\n bins=51, # group the observations into 50 bins\n density=True, # normalize the frequencies\n label=\"normalized histogram\",\n)\n\nx = np.linspace(-5, 5) # possible values of the random variable\nplt.plot(x, dist.pdf(x), label=\"PDF\")\nplt.legend()\nplt.show()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.12.11"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0
|
|
} |