86 lines
21 KiB
Plaintext
86 lines
21 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n",
|
|
"# Simple axes example\n",
|
|
"\n",
|
|
"This example shows a couple of simple usage of axes.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"jupyter": {
|
|
"outputs_hidden": false
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhMAAAGUCAYAAACP/qDZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOMhJREFUeJzt3WdwVeeB//HfVRdqoIYQkmiimCoQHWQguOMYjOOsa0KcRnYm2ey+3FfsvtqZnZ1hZmeS2JPFJHGcQjcYMHYwEAQIIZoKCBUkoYIK0lW7QvX+X+h/T67QVX2uECTfzwwzSOfqnOfRvTrnd552bE6n0ykAAIBR8hnvAgAAgKcbYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABG/Ibzop6eHlVWViosLEw2m22sywQAAJ4ATqdTzc3Nio+Pl4/PwO0PwwoTlZWVSkxM9FrhAADA0+PevXtKSEgYcPuwwkRYWJi1s/DwcO+UDAAAPNGampqUmJho5YCBDCtMuLo2wsPDCRMAAPyDGWqIAwMwAQCAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEb/xLgDwj+Lw4cO6fv26li9frldffbXPtjNnzujMmTP9fmbHjh2aPn364ykggFEb7t9wZ2endu/erdbWVn33u9/VjBkzHl8hxxBhAngMKisrdePGDfn6+iotLc1r+21sbFRGRobu3LmjxsZG+fn5KTIyUgsWLNCKFSvk7+9vtP+enh5VV1eroqJClZWVqqioUG1trXp6eiRJP//5zzVx4kQv1GRkampqdPnyZRUXF6upqUkBAQGKiYnRokWLtGzZMvn4mDW6dnV16f79+6qoqLD+1dfXy+l0SpJ27drlhVqM3L1795SZmamysjK1tLQoKChIcXFxSklJ0cKFC712nKKiIl27dk0VFRVqaWmR0+nUhAkTFB8fr0WLFmn+/Pmy2WxeO95QCgsLlZWVpYqKCrW2tiokJERTp05VamqqkpOTvXIMp9OpvLw8ZWdnq7KyUg6HQzabTaGhoZo6dapSUlK8cix/f3+tWbNGX331lU6ePKmdO3c+1t/lWCFMAI/BX/7yFzmdTi1dulQRERGDvvaf//mfrf8PdqG+c+eODh48qIcPH1rf6+zstC5+V69e1bvvvqtJkyaNutznzp3zeLc1nq5evarjx4+rq6vL+l5XV5dKS0tVWlqq69ev65133tGECRNGfYxjx47p+vXrXiit95w9e1ZnzpyxAo0ktbS0qLCwUIWFhcrOztabb74pP7/Rn9a7u7t18OBB5ebm9tvW1NSkpqYm3b59W9OnT9dbb72loKCgUR9rOJxOp44dO6asrCyPZbl165ZSU1P16quvGl2QHz58qD/+8Y8qKSnpt62hoUENDQ3KycnRwoUL9frrr8vX17ff61asWKH58+dLkioqKnTkyJEBj7dy5Uqlp6erurpaOTk5WrRo0ajL/qQgTABjrKKiQkVFRZKkNWvWDPn62NjYIV9z//597du3T52dnQoICFBaWpqmT5+urq4u5eTkKCsrS3V1dfr973+vH/3oRwoICDCuh5+fn+Li4uRwOFRfX2+8v9EoLCzU0aNH5XQ6FRoaqrS0NCUkJKitrU1ZWVm6deuWysvL9ac//Uk7duzwyh1fYGCgpkyZorq6OrW0tHihFiN39epVff3115KkyMhIpaWlKTY2Vs3NzcrIyNDdu3eVn5+vzz77TNu3bx/1cU6ePGkFiZCQEK1bt05TpkyRr6+vqqurlZ6eLrvdrpKSEh04cEDvvvuuV+o3kNOnT1tBYsqUKVq3bp0mTZqkhoYGpaenq6qqSllZWQoJCdE3vvGNUR/nwIEDVpCYNGmS1q5dq8mTJ6u7u1tVVVU6f/68HA6HcnJyFBwcrC1btvTbR0hIiEJCQiRJDodj0OMFBAQoNTVV58+f17lz5wgTAIZ26dIlSdLUqVMVFRXllX2ePHlSnZ2d8vHx0fvvv6/ExERr24wZMxQZGakvv/xSdXV1unjxojZs2DCq4yQkJOjVV1/V1KlTNXnyZPn4+Ojw4cPjEiZ6enp0/PhxOZ1OBQYG6oMPPlBkZKS1PTk5WZ9//rkyMzNVWlqqmzdvasmSJaM6VnJysqZPn674+HjFxMTIZrNp79694xImHj58qFOnTkmSIiIi9IMf/KBPq8ucOXP0pz/9Sfn5+bp586ZSU1M1bdq0ER+ntbVVV65ckSQFBwfrxz/+scLDw63tSUlJWrx4sX75y1/KbreroKBAVVVVmjJlimENPauvr1d6erokKT4+Xt/73vesbrupU6dq7ty5+vjjj1VZWanz588rJSWlz+dhuCorK1VQUCCpN0js3LlTgYGB1vYZM2ZowYIF+uUvf6mHDx/qypUr2rhxoxUcRmvx4sU6f/68amtrVVxcrJkzZxrtb7wxmwMYQw8fPtStW7ck9Z48vKGiosK6i1q2bFmfIOGydu1axcTESOoNM93d3aM6VnJyspYvX64pU6YYj0MwdevWLSvEpKWlebxwvPDCCwoODpYk60I0GgsXLlRKSopiY2PHvT87KyvL6sp6/vnn+3Xf+Pj4aMuWLdb7M9p6l5eXW10oKSkpfYKES2BgYJ/WtXv37o3qWMNx8eJFa2zOK6+80m/8j7+/v1555RVJvUHTFdpHyr0Oq1ev7hMkXCIiIrR06VJJvV0vFRUVozqWu9jYWE2ePFlSb8vT046WCYypmpoa3b59W6WlpaqtrVVra6t8fX0VGhqqxMRErVixQgkJCR5/Njs7WwcOHJAkpaam6pvf/KbH1zU2Nlp3DVFRUfrxj3/cr1m/p6dH169f161bt3T//n05HA4FBgYqJiZGzzzzjJYvXz5oX3NlZaU18K2pqckakBYSEqKEhAQlJydrzpw5/S48+fn5Vt++qz/V1O3bt63/p6SkeHyNzWbTkiVL9NVXX6mtrU0lJSWaNWuWV44/XoZTb39/fy1YsEBXrlxRTU2NHjx44LXWoPHiqndgYKCeeeYZj68JDw/XzJkzVVhYqOLiYnV0dIy4a8s9cA42zsZ9m/u4FW9yOp3Kz8+XJEVHRw94jkhISFB0dLTq6up0+/ZtvfzyyyMOf+NZ72eeeUbV1dXWecJkvMt4e3pLjideSUmJ9u7d2+/73d3dqq+vV319vW7cuKH169frueee6/e6RYsWqaCgQDdv3lRWVpZmz56tefPm9XmN0+nUoUOH9PDhQ/n4+Gj79u39TqL19fX6wx/+oNra2j7fdzgc1qC9zMxMvfPOOx4vPBcvXtSpU6f6DHyT/jYIrKqqSpmZmfr3f//3fse+e/eupN47m7CwsIF/WSNQVlYmqbffNT4+fsDXuTd1l5WVPfVhwlXv6OhohYaGDvi6adOmWc31ZWVlT3WY6O7utu6CExMTPQ78c5k2bZoKCwvV1dWlioqKEU85dP89NTQ0DPg6921j9bu12+1qamqSpCGnRk+bNk11dXVqamqS3W4f8YDj8ay3KyS5Bk6PpnvqSUGYwJjp6elRQECAZs+erRkzZig6OlqBgYFqbW1VbW2tMjIyZLfbdf78eUVFRVnNiO62bNmisrIy2e12ffbZZ0pISOhzIUlPT7ea/Ddu3KipU6f2+fnm5mbt2bNHLS0tCgwMVGpqqmbOnKmQkBC1t7erqKhIly5d0oMHD/TJJ5/oxz/+cZ8R6tXV1VaQmDRpklauXKm4uDgFBwero6NDDx48UElJidWV8SjXBXCwi/5IuUJRZGTkoF0P0dHR1v/r6uq8dvzx0NHRYV1c3Ovlyd9TvR88eGA19Y+03iMNE5MnT1ZiYqLu3bun69eva+3atf0CcHt7u9WdMHHixDELqO7Bf6T1HmmYmDVrliZOnCi73a6MjAwtXbq0301BU1OTNbsnMTHR6p4w5X6+Ki0tJUwAnsTFxenf/u3fPE4fS05O1sqVK/Xpp5+qqKhIZ8+e1ZIlS/pdHAMDA7V9+3bt3btXDodDhw8f1rvvviubzaaqqiprhHtSUpLWr1/f7zhHjx5VS0uLIiIitGPHjn4nmunTp2v+/Pn6+OOP1dDQoAsXLvQZFZ6Xlyen06mAgAB9//vf73dHnJSUpKVLl+rll1/u16fb2tpq9fF7a5BaV1eXNVLcU5+2u+DgYAUEBKijo0ONjY1eOf54cXUtSUPX233q7d9DvV0eR723bt2qTz75RHa7XR9++KE1m8PHx0c1NTVKT09XQ0ODJkyYoDfeeGPMmuUfZ739/Pz0xhtv6NNPP1V9fb1+9atfae3atYqNjVVPT48qKyuVnp6utrY2TZw4UVu3bh3xMQYSHBxszU4Zy/EnjwNhAmNmqHn+vr6+ev7551VUVCS73a779+97vIN3BYVz586psLBQly9f1rJly3Tw4EF1d3dbgePRIFJTU6M7d+5I6h3ANdAdy5QpU7RixQqlp6fr2rVrfcKEa/R+VFTUoE3rngKT+wnRdOS3S3t7u/X/4fSJ+/v7q6OjQx0dHV45/ngZSb3dQx31Hpno6Gj96Ec/UmZmptLT0/XFF1/02e7r66u1a9dq1apVQ66XYuJx1zsxMVE7d+5URkaGMjIydOzYsT7bAwICtGnTJq1YscJo/RJPQkJC1NDQ0Od88TRiNgcem66uLjU2Nqq2tlY1NTWqqanps726unrAn3Xvwvjyyy914MABqyl0y5YtHhd3cg1c8/f31+zZswctm6t5sbm5uc/djStA1NbWjngEd2trq/V/by3u4z7wa7D+cxfXneNYDZR7XEZSb/e7Zeo9cgUFBcrJyfF4Ye7u7lZeXp5yc3P7jSHypsddb9fql3l5eR5nPnV0dCgnJ8e6OfEm1+yjodameNLRMoEx1dHRoYyMDOXk5PRZhtmTwf6YfHx89MYbb+hXv/qVOjo6rKCwcOHCAadcVlZWSuod3PSf//mfwy6zq1tE6h0Eev78eXV1den//u//rFkbSUlJ1voDA2lra7P+7zphmHI/cQ5nuqfr5Po0jxKXRlZv9wsK9R6ZU6dO6cKFC5KkefPmad26ddb6IrW1tbp8+bKuXbumU6dOqaKiQt/61rfGZOrs46y30+nU/v37rcW6li1bphUrVigmJkY9PT26f/++0tPTlZ+fr8OHD6u6ulovvvjiiI8zENeNBmECGIDdbtdvfvObQUdIu+vs7Bx0e2RkpNavX6/Tp09L6u1GefSBWe7cWwZGwr0c0dHReuONN3T06FG1tbXpzp071t3JhAkTlJycPOAiQe4ntqHqNlzuc+CH06TrOq43VsAcTyOpt/vvmnoP3507d6wgkZKSom3btvXZPmXKFG3dulXh4eE6e/ascnNzNW3aNK1cuXLExxrK46x3ZmamFSQ2btyojRs39tmelJSkpKQkHTp0SDdu3NDFixc1Y8YMzZkzZ8TH8sQVhkyfozPeCBMYMwcPHlRDQ4NsNpv1IKKYmBhNmDDButA6nU79x3/8x7D219HRoWvXrllft7W1qaqqasBR665m2EmTJuntt98edrkf7TKZP3++Zs6cqdzcXBUWFqqsrEytra1yOBy6efOmbt68qZSUFG3durXPXZr7OAn3VgoTfn5+mjBhghwOx5B9rG1tbdaJeCz7tx8H90F4Q9XbvZuKeg+f+8JJgy1NnZaWposXL6qjo0NXr14dkzAxHvUODAz0OIjbZfPmzbpx44b1M94KE65zg7fHYjxuhAmMibq6Omta5Pr167V582aPrxvJRfb48eNWK0dgYKDa29t16NAh/eQnP/HYjeD6XktLi6Kjo41WcAwKClJqaqpSU1Ml9Y6hyM/PV0ZGhpqbm3X9+nXFxcVp9erV1s+4nxzcH8ZlKiYmRqWlpaqvr1dPT8+A9XKfFjnU9LonXUBAgCIiItTY2DjkdM+/p3pHRUXJx8dHPT09Y15v18+HhoYOOoPCz89PsbGxKi8vH7Opt67VW93LNRBv1TsmJmbQbpLw8HCFhoaqpaXFq/V2nQO9NUh7vDAAE2PCfXDlYI9Gdo1rGEpeXp41zzslJUVvvvmmpN67lkdHXru4pmN2dnZawcZbYmJitH79ev3gBz+wmlYffdJiZGSk1XT54MEDrx07KSlJUm9LzWC/v9LS0n4/8zRz1WGoB279PdXb19fXGnh87969QccPuOrt5+c3qnVNXKF0sHFNLq5yjNUS6xMnTrTWuPD0JE93rnqHh4cP+pTdgYxnvZ1Op3WDNJwH/D3JCBMYE+5/mIONF3CtVDiY5uZmHT16VFJvl8XLL79srVMh9V7EXc2P7ubOnWv93+Q5DYOJiIiwVsN7dACVj4+PtcKdN9byd3FfBXSgx2Q7nU7rdxIUFDTkKoJPg+HUu7Oz0wp1MTExT/Xqly6uere3tw+4OFpTU5OKi4sl9T6YytPzJYbiuhA7HI5+q8W6a2trs24WTB5vPxibzWbVu66uTuXl5R5f5946Mnfu3FENBnXVu6amZtAWxJqaGqsVwVv1rq2ttboin+YFqyTCBMaI+0nc04Ve6h345P68BU+cTqcOHz6strY2a7ls14ny+eeft5pDjx8/Lrvd3udnp06daq3QV1BQYC1wNRC73a7s7Ow+37t9+/agJxj3ZndPJxjXCaK6utpr0xSnTp1q7ffq1aseF7u5cOGCdUFYvXq1x+l1169f165du7Rr1y6dOXPGK2UbyOHDh61jDXWnOZB58+ZZD/f661//6vHJpadOnbJO+OvWrfO4nzNnzlhlGSiUeMvevXutYz36+RyuZcuWWSP+v/rqq36htaenR59//rkV4NeuXetxP0O9B+7h++TJkx5bQZxOp06cOGFtG2jcwO7du61jjdbq1autFoDjx4/3uynp7OzU8ePHJfUGd/cuRndDvQeuend1demLL77wOOW1q6tLJ06csL721ngJ95uMp70VjTETGBNxcXGKjY1VTU2NMjMz9fDhQy1atEhhYWFqbGzUzZs3lZeXp6SkpEG7IC5duqSioiJJvQO/3J+Q6e/vr+3bt+vXv/61NX5ix44dfe5Otm3bpo8++kjNzc06e/asioqKtHTpUsXGxsrPz09tbW2qrq5WYWGh7t69q3nz5mnRokV9jn/gwAHNmTPHWhI8KChIbW1tqqys1OXLl62T3PLly/uVf/bs2Tpz5oy6u7tVVlbmtccMv/TSS9qzZ486Ozv1u9/9TmlpaZoxY4Y6OzuVk5OjrKwsSb2hzv0pjyPV0dGhvLy8Pt9zv4jn5eX1GRsSFxenuLi4UR9vML6+vnr55Zf16aefqr29XXv27NGzzz6rqVOnqq2tTVevXrXK6npc9mi1tLSosLCw3/dcHg0hSUlJo3r89XAEBwfrueee07Fjx2S32/XrX/9aaWlpmjx5spqbm3Xp0iXrGTCLFi0a8TLaLikpKbp48aLq6upUVFSkjz76yFo+3mazqba2VleuXLHCa2hoqNFnayhRUVFau3atzp8/r8rKSu3Zs0fr1q1TZGSk9XjyqqoqSb3BcbStUGvWrNHVq1fV2tqqa9eu6cGDB1q+fLmio6PldDpVVVWljIwMK5zHxMQM+KC5kXK1JsXExIyqi+ZJQpjAmLDZbNq+fbt+85vfqK2tTdnZ2f3u+idPnqw333xT//M//+NxH9XV1frLX/4iqfdufMOGDf1eM2XKFG3atElfffWVSktLdf78eaWlpVnbw8LC9P3vf1/79u1TRUWFysvLB2wyleSxedjVdP7omAgXHx8fbdq0qd9DyFzldj3VMDs722thYsqUKfrWt76lgwcPqr293fo9uYuKitK77747qiZvF9cS5gM5depUn683btzoMUy431WarLkxe/Zsvfrqqzp+/LhaWlqsO1N3U6dO1VtvvWXUr11XVzdovR/dtm3bNo9hwlVvX19fo/dh+fLlam5u1rlz51RfX68jR470e83s2bONlnr29fXVe++9pz/+8Y+6f/++qqurre7FR02aNEn/9E//NOAMBFe9TddX2bx5s3WRr6qq0v79+/u9ZtmyZYPOPhnKhAkT9P777+tPf/qTGhoaVFZWNuANTlxcnN56661hLRg3lM7OTuvJqEuWLDHe33gjTGDMxMXFaefOnfrrX/+qwsJCNTc3KyAgQJGRkVqwYIFWrlw54Ojprq4uHTx4UF1dXQoICPC4XLbLunXrVFhYqJKSEp05c0azZs3qMwBt4sSJ+sEPfqD8/Hzl5OSooqJCLS0t6unpUVBQkCIjI5WYmKi5c+f2a2p88803VVxcrKKiIt2/f18tLS1yOBzy8/PTxIkTNW3aNC1fvnzQB/+sWLFCJ06cUF5enrZs2eK1hZTmzp2rn/zkJ8rIyNCdO3fU1NQkX1/fPr/fJ2XuuivAzZw50/ghSampqUpMTFRGRoaKi4utz1V0dLQWL16sZcuWjdnAwJHo6urS/fv3JfVeLEwvrJs2bVJycrIuX76ssrIytbS0KCgoSHFxcUpJSenTojZaEydO1A9/+EPl5OQoLy9PVVVVcjgccjqdCg4O1uTJkzVv3jwtWbJkwDUdGhoarDVeTFsubDabtm7dqvnz5ysrK0sVFRVyOByaMGGCpk6dqtTU1CFXtx2OuLg4/eQnP9GNGzd0+/ZtVVdXq62tTTabTSEhIYqLi9OCBQu0YMECrwQJqbcLtaOjQ35+fh4fcvi0sTmHsSZqU1OTNS1rqIeuAOiro6NDu3fvlsPh0Pbt2z02v585c8Yat2DSz/wkstvt2r17tyTpe9/73lM/0Gy4SkpKtHfvXvn4+OinP/3pmA1WfNJcv35dhw8fVlBQkP71X//VqEXmaeV67yVpx44dHgdA//a3v1VxcbFSU1P1zW9+8/EWcASGe/0f//gO/J0LCAiwBgOeO3duyGcauJ5bUlNT89Q/qEr629S+6dOn/8MECelv9V68ePE/TJCQ/lbv1atX/0MFidbWVuvvdqhVf8vLy1VcXCxfX98+3bJPM7o5gMdg1apVyszMVF1dnXJzcwdde+MXv/iF9f+B7mqeJq51ADyNefl7VlpaKh8fn7+bi8VwlZaWKjAwUKtWrRrvojxWmZmZw54V5XrdqlWrnvqBly6ECeAx8PPz0/bt21VcXDysxXH+nmzdutVoYODT6rvf/e54F2Fc/Mu//Mt4F+GJ1tnZqYSEBCUkJIzpbJjHjTETAADAI8ZMAACAx4IwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACN+412Ap0FPT48qKysVFhYmm8023sUBHiun06nm5mbFx8fLx4f7DwD9ESaGobKyUomJieNdDGBc3bt3TwkJCeNdDABPIMLEMISFhUnqPZmGh4ePc2mAx6upqUmJiYnW3wEAPIowMQyuro3w8HDCBP5h0cUHYCB0gAIAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYIQwAQAAjBAmAACAEcIEAAAwQpgAAABGCBMAAMAIYQIAABghTAAAACOECQAAYMRvvAvwj+TXv/616uvr9fOf/1wBAQGSJLvdrt27d/d53caNG7Vx48bHX0BgHPzqV7/S/fv3ra+nT5+uHTt2WF/fuHFDhw4d0muvvaZly5aNQwkBDIUw8Zjk5uaqvLxcmzdvtoKEOz8/P8XHx0uSIiIiPO6jq6tL6enpysnJUUNDgwICApSYmKi0tDQlJCSMqDxdXV0qKChQQUGBysvL1dDQIKfTqfDwcM2cOVNr165VZGTkyCs6DAUFBbp48aKqqqrU1dWl6OhopaSkaOXKlbLZbCPaV1VVlW7fvq2SkhLV1tbq4cOHCg4O1pQpU5SamqpnnnlmTOrQ1NSks2fPqqCgQK2trQoNDVVycrI2bNig8PDwEe2rpaVFWVlZqqioUG1trRwOh7q6uhQWFqZp06ZpzZo1iouL83odnE6nLl++rGvXrunBgwfy8/PTlClTtGbNGs2ePXvE+7t+/bpKSkpUVVWllpYWtbW1KTAwUHFxcVqyZImWLFni8f2Ni4tTQECAHj58qJqamn7bFy1apDNnzujrr7/WokWL5O/vP6r6Ahg7hInHwOl06vTp0woMDNTKlSs9viY0NFQffPDBgPvo6OjQ3r17VVlZKV9fX8XGxqq1tVX5+fkqKCjQ9u3btXDhwmGX6dy5czp37pyk3iATFRWlnp4e1dfX68qVK7px44befPNNzZkzZ2SVHcL58+f11VdfSZImTZqkgIAA3b9/XydOnFBxcbHeeuutYQeK+vp6ffjhh9bXkyZN0sSJE9XQ0KDCwkIVFhYqJSVFW7duHXFIGUxtba327NmjtrY2BQUFKTY2Vg0NDcrKytKtW7f0wQcfKDo6etj7q6mp0ddffy1JmjBhgiZNmqTu7m7Z7XbduHFD2dnZ+uY3v6mlS5d6rQ49PT364x//qDt37shmsyk2NlYdHR0qLi5WcXGxXnjhBa1du3ZE+zx9+rSamprk7++v8PBwRUREqLGxUXfv3tXdu3eVm5urt956S76+vn1+btu2bZKkkpIS7d27t99+fXx8tG7dOh07dkwZGRlav379aKsNYIwQJh6DwsJCPXjwQCkpKQoMDBzVPk6dOqXKykpFR0frvffe08SJE+V0OnXhwgV9+eWXOnLkiBITEwds1fBkxowZWrVqlZKTk+Xn1/tRaGlp0ZEjR1RQUKD9+/frZz/7mUJDQ0dV5kfdu3dPf/nLX2Sz2bR9+3YtWrRIknT//n198sknys/P18WLF0d0EQsLC9Pq1au1ePFihYWFSeoNb5mZmTpx4oSuX7+u+Pj4AUPcSPX09OjPf/6z2traNH/+fL3++uvy9/dXR0eHDh06pFu3bmnfvn3auXPnsANMRESEXnvtNSUnJ/dp1Whvb9fXX3+tS5cu6fPPP9esWbNG3OoxkAsXLujOnTsKDQ3Ve++9Z7V8ZGdn6+DBg/ryyy81bdo0TZ06ddj7XL9+veLj4zV16tQ+dXd9lgoKCnTp0iWtW7duxOVduHChTp48qStXrmjdunVeDYcAzDEA8zHIysqSpBG1HLhrbm7W1atXJUlbt27VxIkTJUk2m03r1q3TrFmz1NnZqQsXLgx7n6tXr9Z3v/tdzZs3zwoSUm8Lybe+9S2FhISoo6ND2dnZoyqzJ+fOnZPT6dSyZcusICH1NnO/+OKLknpbLrq7u4e1v/DwcP3sZz/TunXrrCAh9f5eVq5cqdTUVEl/+/17w61bt1RbW6sJEyZo69atVpN7QECAtm3bpgkTJqi6ulq3b98e9j6joqK0bNmyfkEhMDBQL774omJjY61uKW/o7u5Wenq6JOnFF1/s04WyaNEiLVu2TE6n02q5Gq6VK1cqISGh34V+9uzZevbZZyVpRL8Xd0FBQUpOTpbdbldRUdGo9gFg7DyRLRM1NTXKzc1VUVGR7Ha72traFBwcrMTERK1du1aJiYl9Xu9wOPSLX/xCLS0tev3117VkyZI+2zs7O/Xhhx+qrq5OmzdvVlpamrXN6XQqNzdXV69eVVVVlTo6OhQeHq45c+YoLS3N4115WVmZLly4oPLycjkcDgUGBiokJERJSUlatmxZn/ELHR0dKigokJ+fn2bMmDGq30d+fr56enoUExPTr+6StHTpUhUVFSkvL08vv/zysPY5YcKEAbcFBgYqISFB+fn5evDgwajK/Kj29nYVFxdLksdBdPPnz9exY8fkcDhUUlKiWbNmDblP9xDkyaxZs3TlyhWv1UHqDROStGDBgn6tTIGBgZo/f76uXLmivLw8r4zXsNlsioqKUk1NjTo7O433J0l37961xjPMnz+/3/alS5cqKytLRUVFam9v98oxXd0+JnWYM2eObt++rdzcXCUnJ3ulXAC844lsmTh58qTOnj2ruro6BQcHKzY2Vj09Pbp165Y+/vjjfnfLrrtESTp+/Ljsdnuf7V9++aXq6uqUmJjYp4m1u7tb+/fv1/79+1VcXCw/Pz/FxMSopaVFGRkZ+vDDD/tdiG7fvq2PP/5Yt2/fVk9PjyZPnqyQkBA1NTXp6tWrysnJ6fP68vJydXd3a8qUKf36ioervLxckjwGCUlKSkqS1NuC0djYOKpjPKqrq0uSvDbYraqqSt3d3dYgv0f5+vpaTequ+prydh2k4b8X3qxDVVWVJHn8vY2Gq2xTp071+JmMj4+Xn5+furq6+syy8MYxTerg+nyUlpZ6pUwAvOeJbJlYvny5XnzxRU2ePNn6ntPpVH5+vg4ePKhjx45pzpw5fe4MZ8+ereXLl+vKlSs6dOiQduzYIZvNpqKiImVmZiogIEDbt2+Xj8/f8tPXX3+t3NxcTZkyRVu3brWaezs7O3Xq1CllZmbqwIEDeuutt6yfOX36tJxOp7Zs2aLU1FRrf06nU6Wlpf3u5O7duyfJ7CRaX18vqXeAoSdhYWHy9fVVd3e36uvrRzRuwpOWlhbrhD3QRXOkXHWIiIjo8x64c9XP9VpTubm5krxXh+7ubiusDfReuL5vt9vV3d096gDZ3t6u2tpanT17Vna7XQsWLNC0adNGV/BHDPV58vHxUUREhB48eKD6+voBXzeU7u5uNTU1KScnR+np6QoJCdGGDRtGXe6YmBj5+/urvr5eLS0tXhvLA8DcExkmPDW92mw2zZs3T6tXr9a5c+d0586dPv3ukvTCCy/o7t27Ki0t1YULF7Rs2TIdPnxYTqdTL730Up+TYmtrqy5duqTAwEC9/fbbffqr/f399corr6iyslIVFRUqKyuzttXX1ys4OFgrVqzoV77p06f3K7erlcS9T3+k2traJEnBwcEet9tsNgUFBam1tdV6rYkvvvhCXV1dioqK0rx584z3Jw1dB6m3X9z9tSaKioqs/vnRDPjz5OHDh3I6nZIGroerDk6nU+3t7YN2J3nyX//1X3r48KH1dUhIiF566SWvDSCVxv69OHnypC5dumR9bbPZlJKSog0bNljjfUbDx8dHISEhstvtstvthAngCfJEhglJamxsVHZ2tqqqquRwOKxBea2trZJ6ZwA8GiYCAgL0+uuva8+ePTp9+rQKCgrU3NysuXPn9uunLygoUFdXl+bOnetxhLzNZtOcOXNUUVFhtS5IvYP+GhoaVFRUNKx+fYfDIWnwE/dQXM31g93lusYPuF47WpmZmcrOzpaPj4+2bds2YCvCSD3OOjQ2NurAgQOSpBUrVnjtjt69XAPVw30cx2jqkZCQoI6ODjkcDtntdrW2tionJ0fTp0/32loTY/1eTJo0SUlJSerq6pLdbpfD4VBBQYEmT56s1atXj67Q/19wcLC1TwBPjicyTFy/fl3Hjh0b9EQ20B1TQkKC0tLSdPbsWZWUlCgkJESvvfZav9e5FscpLy/Xnj17PO6rpaVFUu9YBJc1a9bo888/1+9+9zvFx8dr5syZSkpK0rRp0zxO+xzOiXsorhP7YLMcXMcZalDiYO7cuaMTJ05Ikl555RWvdQ9Ij68ObW1t+uSTT+RwODR9+nRrlog3uJdroHq4f2ZHU4/33nvP+n9HR4cuXryoM2fOaM+ePdq5c6dXFhIb6/di1apVWrVqlfV1YWGhjh07ppMnT6qrq8tonQhXebw1GBWAdzxxYaK+vl5Hjx5Vd3e31q5dq8WLF1uLG9lsNl29elWfffaZenp6BtzHjBkzdPbsWUm9I8BDQkL6vcbVlNzY2DjkoEX3C8SKFSsUEBCgixcvqrKyUpWVlZJ6T3JLlizR888/bzURS39rkXBvuh4p1z4GClBOp9Pa/2hbQEpLS7Vv3z719PRo8+bNWr58+egKO4Ch6iDJuA4dHR36/e9/r9raWsXHx+vtt982CiaPCgoKks1mk9PpHLAerjrYbLZRryniEhAQoA0bNqi1tVWXL1/W+fPnPQbjkXoc74W75ORkffvb39ZHH32kc+fOadWqVaMeFOsq80i7jwCMrScuTOTm5qq7u1sLFy7UCy+80G/7UBf+jo4OHTlyRFLvCf369etKSUnp19TtWtL62Wef1Te+8Y1B99nU1NTna9fSwC0tLSopKVFxcbFycnKUlZWl5uZmvfPOO9ZrXUHGZBxAZGSkysrK1NDQ4HF7c3OzdZc5mjvXyspKffrpp+rs7NS6dev6TJ31Fle5Ghsb1dPT47H7xFW/0dShq6tLf/jDH1ReXq6YmBi99957xhfzR/n6+ioiIkJ2u10NDQ0eW25cdZg4caJRa5S7OXPm6PLly9asDlOu3+9An6eenh7r78xbS6rHx8crNDRULS0tqq+v7zO4eiRcf0eebhAAjJ8nbmqoa8DiQE3s1dXVg/78iRMn1NDQoFmzZumll16S0+nUoUOH+s2yiImJkSSPzwIYrtDQUC1cuFCvvfaafvjDH8pms+nOnTt9ukVc/dx1dXWjPo5r3Qr3sRvuXANEw8LCRjyTo7a2Vp988ona29u1fPlyPf/886Mu52BcU2Pdpzq66+7uVkVFhSSN+DkjPT092rdvn+7evatJkybpO9/5zpjduQ73vRhpHQbjaoUbrDVuJFxlq6io8NjVUVlZqa6uLvn6+nr1mSCm9XA4HGptbZW/v7+ioqK8Vi4A5p64MOFq/nQNtHRXV1en/Pz8AX82Pz9f165dU1BQkLZu3aqVK1dq1qxZstvtOnnyZJ/XzpkzR76+viooKPDKokYxMTFW94Z7mHCtO+DqDhmNuXPnysfHR7W1tR4vYteuXZPkeRbMYOx2u373u9/J4XBo0aJF2rJly6jLOJTAwEDNnDlTkqzVPN3l5eVZsx88zYoZiNPp1OHDh5Wfn6+wsDB95zvfMZo5MxTXQlS5ubn9Amp7e7vy8vIkjfy9GIxrVoq3LuzTp09XcHBwn/K6c32ekpOTvda6U1ZWJofDYT0HZjTcw6a3Wn0AeMcTFyZcF9/MzMw+C+Y8ePBAf/7znwc8ibS2tuqzzz6TJG3ZskXh4eGy2Wzatm2bgoODde3atT5L+bqe6dDd3a1PPvlEJSUlffbndDpVUVGhY8eOWc3B7e3t2r9/v0pKSqwpglLvnVZGRoba2toUEBDQ5yFPUVFRmjRpkux2e7/ukuEKCwuzHvJ05MgRq/XG6XQqPT1dRUVF8vPz8/hMiz179mj37t39LhotLS367W9/q6amJs2dO1evv/76sJ93cObMGe3atcvjQ5kGk5aWZo17cV947P79+/riiy8k9U7jfPQ9vnTpknbv3q39+/f32+fJkyd18+ZNTZgwQd/5zneGvSaC3W7Xrl27tGvXrn6LnA3mmWeeUXR0tBwOh44cOWINBHR1rzkcDsXGxvabUtvU1KTdu3dr9+7d/T4Hp0+f1p07d/oNOG5tbdWpU6d09epV2Wy2ftORJWnv3r3atWuXzpw5M+w6uH9Wvvjiiz5/Z9nZ2dbxPHV37d+/X7t37+4z9VPqnR114cKFPkFa6v2M5uTkaN++fZJ6V9f09NTc4XAF6eHMogLweD1xYybmzZunhIQElZeX66OPPlJUVJRsNptqa2sVGhqqZ599VqdPn+73c5999plaW1u1YMGCPlNGw8LC9Oqrr2rfvn06evSoEhMTrf7WzZs3q7m5WTdv3tTevXsVGhqqiIgIdXd3q6GhwbrzXLBggaS/nRhzcnIUEBCgyMhI+fj4WFPVbDabXnrppX4ny6VLl+r06dPKyckZ8ZMYXV544QVVVlaqqqpK//u//2s9NbSpqUk+Pj567bXXPHZxNDU1yW63q6Ojo8/3v/76a2vxoubm5gGDwezZs702hiIpKUmbNm3S6dOndeDAAZ0+fVoBAQGqqamR0+nUnDlztGbNmn4/9/DhQ9nt9n5rFNy7d08ZGRmSelu0jh49OuCxB3si60j4+Pjo29/+tj7++GPl5eWpuLhYkZGRqq+vtx5//uabb/YLZj09PVZoebSZv6ysTOfOnZOvr68iIyMVEBBgvbc9PT3y9fXVK6+84tWuk3Xr1qm0tFSFhYX68MMPraeGuoLzc8895/F4LS0tstvt/QYUu4LPqVOnFBERodDQUHV0dKixsdH67M2ePdvjOKjhys3NlY+PT7/l8gGMvycuTPj4+Oj999/X6dOnlZeXp/r6eoWEhGjp0qXatGmTx4f8XL161WrmfvXVV/ttX7BggW7fvq3s7Gx99tlnevvtt61juZ5emZWVpfLyct2/f19BQUGKiopSQkKC5s+fb93tulbRLCoqUkVFhbXKYXh4uJKTk7V27VqPTdFLly7VmTNnlJ2dPeowERgYqA8++EDp6enKyclRbW2tAgICNHfuXK1fv37E0zjd+8oH64LxNADPNWV2NM3uzz77rOLi4nTx4kVVVVWppaVFkydPVkpKilauXDmidS3c6zCcWTnuXHUICQkZ8eJHsbGx2rlzp86ePavCwkJVV1crJCRECxYs0IYNG0b8ZM+NGzfq9u3bKisrU1NTkx48eCB/f3/FxMRoxowZWr58+YCPNB/te+Hj46N33nlHly9f1vXr1/XgwQP5+vpqxowZWrNmzYgfPT9z5kw999xzKikpUV1dnRUQQ0JCNGvWLC1evNjoWSWVlZV68OCB5s2bN6bdWABGx+Z0b68fQFNTkyIiItTY2Oi1RyA/TbxR/6NHjyorK0sffPCB1ZUj9Ta37969WxMnTtTPf/5zL5V4bP3yl79UbW2tfvrTn456qeXxdvHiRX3xxRfatGmT0RLP48nhcOi///u/NWnSJP30pz8ds8dyP66//5KSEu3du1fTp0/Xjh07+mw7dOiQbty4oR/+8Icjeiw6ADPD/ft/4lom/l5t3LhRN2/e1NmzZ/X+++/3297S0mItnrV06VJrjMSTpr29XTU1NXrmmWee2iAh9XYt+Pv7exyH8LS4d++enE6nVq9ePWZB4nE4fPiw1U3kSUNDg7Kzs7VgwQKCBPCEIkw8JmFhYXr99ddVU1Ojjo6OfuMqurq6rGmFrlkPTyLXBczT2IanSXl5uRYvXvxUL3507949BQcHKyUlZbyLYuT+/fuDPp20qalJzz77LGMlgCcY3RzD8I9ef/xj4/MP/OMa7t//Ezc1FAAAPF0IEwAAwAhhAgAAGCFMAAAAI4QJAABghDABAACMECYAAIARwgQAADBCmAAAAEYIEwAAwAhhAgAAGCFMAAAAI4QJAABghDABAACMECYAAIARwgQAADBCmAAAAEYIEwAAwAhhAgAAGCFMAAAAI4QJAABghDABAACMECYAAIARwgQAADBCmAAAAEYIEwAAwAhhAgAAGCFMAAAAI4QJAABghDABAACMECYAAIARwgQAADBCmAAAAEYIEwAAwAhhAgAAGCFMAAAAI4QJAABghDABAACMECYAAIARwgQAADBCmAAAAEYIEwAAwAhhAgAAGCFMAAAAI4QJAABghDABAACMECYAAIARwgQAADBCmAAAAEYIEwAAwAhhAgAAGCFMAAAAI4QJAABghDABAACMECYAAIARwgQAADBCmAAAAEYIEwAAwAhhAgAAGCFMAAAAI37jXYCngdPplCQ1NTWNc0mAx8/1uXf9HQDAowgTw9Dc3CxJSkxMHOeSAOOnublZERER410MAE8gwsQwxMfH6969ewoLC5PNZhvv4gCPldPpVHNzs+Lj48e7KACeUISJYfDx8VFCQsJ4FwMYN7RIABgMAzABAIARwgQAADBCmAAAAEYIEwAAwAhhAgAAGCFMAAAAI4QJAABghDABAACMECYAAIARwgQAADBCmAAAAEYIEwAAwAhhAgAAGCFMAAAAI4QJAABghDABAACMECYAAIARwgQAADBCmAAAAEYIEwAAwAhhAgAAGCFMAAAAI4QJAABghDABAACMECYAAIARwgQAADBCmAAAAEYIEwAAwAhhAgAAGCFMAAAAI4QJAABghDABAACMECYAAIARwgQAADBCmAAAAEYIEwAAwAhhAgAAGCFMAAAAI4QJAABghDABAACMECYAAIARwgQAADBCmAAAAEYIEwAAwIjfcF7kdDolSU1NTWNaGAAA8ORwXfddOWAgwwoTzc3NkqTExETDYgEAgKdNc3OzIiIiBtxucw4VNyT19PSosrJSYWFhstlsXi0gAAB4MjmdTjU3Nys+Pl4+PgOPjBhWmAAAABgIAzABAIARwgQAADBCmAAAAEYIEwAAwAhhAgAAGCFMAAAAI4QJAABg5P8B2sxDpQWQUu8AAAAASUVORK5CYII=",
|
|
"text/plain": [
|
|
"<Figure size 640x480 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"import matplotlib.pyplot as plt\n",
|
|
"\n",
|
|
"# 在图窗左下角 10 %、10 % 处放置一个占图窗80%宽、80%高的子图\n",
|
|
"plt.axes((0.1, 0.1, 0.8, 0.8))\n",
|
|
"plt.xticks([])\n",
|
|
"plt.yticks([])\n",
|
|
"plt.text(\n",
|
|
" 0.6, 0.6, \"axes([0.1, 0.1, 0.8, 0.8])\", ha=\"center\", va=\"center\", size=20, alpha=0.5\n",
|
|
")\n",
|
|
"\n",
|
|
"# 在图窗左下角 20 %、20 % 处放置一个占图窗30%宽、30%高的子图\n",
|
|
"plt.axes((0.2, 0.2, 0.3, 0.3))\n",
|
|
"plt.xticks([])\n",
|
|
"plt.yticks([])\n",
|
|
"plt.text(\n",
|
|
" 0.5, 0.5, \"axes([0.2, 0.2, 0.3, 0.3])\", ha=\"center\", va=\"center\", size=16, alpha=0.5\n",
|
|
")\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.12.11"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|