98 lines
23 KiB
Plaintext
98 lines
23 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"\n",
|
||
"# A simple plotting example\n",
|
||
"\n",
|
||
"A plotting example with a few simple tweaks\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {
|
||
"collapsed": false,
|
||
"jupyter": {
|
||
"outputs_hidden": false
|
||
}
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAE5CAYAAACHy8exAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAALEwAACxMBAJqcGAAAPTxJREFUeJzt3XlQlHeaB/Bvc4MKCiKCIKKIQEPTyOGRxDPmUGOiSWV1Jzu6amUziTVJ7SaTTLam3JndXJvMTIxJZSprxh3dRCdxos4YIYN4K4rctyKXcgnKfUP3b/9wYECg+23eft/f+3Y/n6pUhdjP+zySF37d7/F9NYwxBkIIIUQgB94DEEIIURdaOAghhFiEFg5CCCEWoYWDEEKIRWjhIIQQYhFaOAghhFjEifcApkyfPh1z5syZcH1nZycmTZpE9VRP9VRvd/ViVVZW4u7du2P/IVOwuLg4UfVnzpyheqqneqq3y3qxTP3+pUNVhBBCLEILByGEEIvQwkEIIcQitHAQQgixCC0chBBCLEILByGEEIvQwkEIIcQitHAQQgixCC0chBBCLEILByGEEIsoOqvKFuXk5ODevXtwcHAAYwyMMSxduhTu7u68RyN2oKamBtevX4dGo4FGo8HAwABCQkIwb9483qMRFaGFQyZ37txBeno6EhMTodfrh/67wWDAhQsX4ObmhsWLF/MbkNg0g8GAU6dOYebMmVi1atWIPystLcWJEyewevVqegNDBKFDVTK4fv06bt68iaeeegp+fn4j/szR0RErVqxAUFAQkpKSwBjjNCWxVb29vTh27BhWrFiBmJiYUX8+f/58rF27FikpKWhtbeUwIVEbWjgkVlFRgebmZjz00EMmXzdr1iwsXboUKSkpMk1G7IHBYMCJEyewceNGuLq6jvs6BwcHPPXUU7hw4QLa29tlnJCoES0cEurs7ERZWZngQ1BeXl7QarVIS0uTeDJiL06ePIn169fDwcH8j7pGo8G6detw6tQp+uRLTKKFQyKMMWRnZ2P16tUW1c2aNQsuLi6oqamRaDJiL4qKipCYmGjyk8aDNBoNHn30UaSmpko4GVE7WjgkcvHiRej1emg0Gotr4+LikJWVBaPRKMFkxB60tLSgv79/1Dk1IaZMmQI/Pz/U19dLMBmxBbRwSKCtrQ2MMUyePHnC21i1ahXy8vKsOBWxJxcvXoROp5twfXR0NCoqKuiQFRkTLRwSuHjxIh555BFR2xh81nBHR4c1RiJ2pKioCFFRURP6tDtcdHQ0Ll++bKWpiC2hhcPKqqqqMGfOHNE/tAAQExODCxcuWGEqYk8G90GxJk+ejK6uLgwMDIgfitgUqywcycnJWLBgAUJDQ/H++++P+vPm5mZs3LgROp0OiYmJKCgosEZbRSouLkZkZKRVtqXRaDB9+nTcvXvXKtsjtm/wJlNrWbZsGc6fP2+17RHbIHrhMBgMeOWVV5CUlISioiIcOnQIRUVFI17z7rvvQq/XIy8vDwcOHMCrr74qtq0ilZeXIyQkxKrbjI+PR0ZGhlW3SWxXc3MzfHx8rLa9wSuy+vv7rbZNon6iF4709HSEhoZi7ty5cHFxwebNm3H8+PERrykqKhq6LDU8PByVlZW4c+eO2NaKU1paigULFlh1mxqNBlOnTkVzc7NVt0tsT1ZWFmJjY62+3YcffhiXLl2y+naJemmYyMsmjhw5guTkZOzbtw8AcPDgQVy9ehWffvrp0Gvefvtt9PT04De/+Q3S09OxdOlSXL16FXFxcaO298UXX+CLL74AAFRXV+Pw4cMTnq2jo0PUlU2W1Dc1NaGpqQmhoaFW788Yw7Vr1yw+BCHn35/q+dc/eJjKmv2vXbuG+Ph4i87dqe37Z2v1Yr3++uvjH+1gIn3zzTdsx44dQ18fOHCA7dq1a8RrWltb2bZt21hMTAx74YUXWHx8PMvJyTG77bi4OFGznTlzRrb6H374QdL+p06dYv39/ROuF9uf6pVdf+PGDVZeXi5Z/5aWFpaWljbherH9qV5+pn7/ik7HDQwMxO3bt4e+rq6uRkBAwIjXeHp6Yv/+/YMLFUJCQqx+LoCnnp4ei+7OnYiHHnoIly5dwvLlyyXtQ9SpsrISa9askWz7Xl5elGFFhog+x5GQkIDS0lJUVFSgr68Phw8fxoYNG0a8pqWlBX19fQCAffv2YdmyZfD09BTbWjHS0tKwdOlSSXu4ubmhp6dH0h5EnTo7O4fu+5HS7NmzcevWLcn7EOUTvXA4OTnh008/xeOPP46IiAg8//zz0Gq1+N3vfoff/e53AO5foqrVahEeHo6kpCTs2bNH9OBKMjAwAGdnZ8n7hIeHo6SkRPI+RF2uXLmCRYsWSd5nwYIFuHHjhuR9iPJZ5UFOa9euxdq1a0f8t5deemno35csWYLS0lJrtFKcmzdvyvb0tODgYKSkpCA8PFyWfkQdGGNwdHSUpZeTkxP6+/tleaNElIvuHBepoqICc+fOla2fs7MzXVNPhpSUlCAsLEy2fosXL8bVq1dl60eUiRYOEQwGg2zv9AYtXryYntdBhlRXV2P27Nmy9aNzbQSghUMUa8c7COHm5jZ0oQGxbwMDA4Ie0GRtXl5eaGlpkb0vUQ5aOETo7OzkcoMO/eAS4P4bFzlOij8oLi4OmZmZsvclyiFLyGFrayueeuopxMTEQKvVDt3ToWZdXV1wc3Pj0pt+cAlwfx+U4zLcBzk4ONBzOuycLCGHn332GSIjI5Gbm4uzZ8/i3/7t31R/uIXXuz2AfnAJ0NfXx/XKJn9/f9TV1XHrT/iSJeRQo9Ggvb0djDF0dHTA29sbTk5WuRKYG7nu3RjPjBkzbDIokghz9epVbm9cACAyMnLUG0RiP2QJOWxvb8eGDRtQUlKC9vZ2/PGPf8S6devG3J4aQg57enpQWlqK6OhoLv2B+9fuZ2VljRkUKUd/qudbn5mZafL/vdT9hcyg5O+fPdSLxT3k8Ntvv2WvvfYaMxqNrLS0lM2ZM4e1traa3bZSQw7Pnj3L+vr6uPUflJKSwrU/1fOp7+3tZefOnePWf1BBQQGrra3l1p/qpWXq96/oQ1VCQg7379+PTZs2QaPRIDQ0FCEhIaqOzlDKnbN0dZV9unbtGhISEniPgcjISBQWFvIeg3AgS8jh7NmzkZqaCgC4c+cOrl+/Luvd1tbU29sLFxcX3mMAoKur7FV3dzfc3d15jwGNRmPR8zmI7RB9hnp4yKHBYMD27duHQg6B+5lVv/jFL7Bt2zZER0eDMYYPPvgA06dPFz08DxkZGYp4twfQ1VX2yGg0crnpbzxTpkxBa2srvLy8eI9CZCRLyGFAQAD++te/WqMVdz09PYp4tzfIxcUFvb29kj8PhChDdna2JI+Hnai4uDicP38eK1eu5D0KkZFy3rqogBLf3cfHx49/5QOxOS0tLZg2bRrvMYY4OjrCaDTyHoPIjBYOCxQWFkKr1fIeYwQPDw90d3fzHoPYMScnJwwMDPAeg8iIFg4L1NfXY+bMmbzHIHbqzp078PPz4z3GKLGxscjOzuY9BpERLRwWUOoVJHPmzEFlZSXvMYjElPiJFwA8PT3peeR2RpaQww8//BB6vR56vR5RUVFwdHREU1OTNVrLpq2tTbHPSQ8NDUVZWRnvMYgMlPrmhdgXWUIO33jjDeTk5CAnJwfvvfceli9fDm9vb7GtZaW0q1mIfTEYDIq6DPdB3t7euHfvHu8xiExkCTkc7tChQ9iyZYvYtrIbGBhQdDCjq6srPZnNhuXm5kKv1/MeY1w6nQ55eXm8xyAykSXkcFBXVxcCAwNx8+bNcT9xKDXkUEionJT9zenr68P169dHBC/yDlmjeuvVZ2VlYeHChdz6C/HgjEr6/tljvVjcQw4HHT58mK1fv17wtpUScnjz5k1WXl7Orb9Qp06d4tqf6qWrT01N5dpfiNTUVGY0Grn1p3rr4h5yOOjw4cOqPExVWVmJkJAQ3mMQO3Xv3j1VnBPUarUUemgnZAk5BO4/PvbcuXN4+umnxbYk45g9ezZu3brFewxiZfn5+dDpdLzHMMvPzw8NDQ28xyAyEL1wDA85jIiIwPPPPz8UcjgYdAgAR48exWOPPcblGcliKP2k+HChoaG4efMm7zGIlSkt2JAQWUIOAWDbtm3Ytm2bNdrJSk2X4dI1/rZJTf9fPTw80NnZqbo3iMQy9DbGDCXf+DcepsAwRjIxFRUVmDNnDu8xBFu4cCHFj9gBWjhszLx581BeXs57DGIlarsww8XFBX19fbzHIBKjhcOE7u5urtdRT0RwcDCqqqp4j0GshD49EiWSJasKAM6ePQu9Xg+tVovly5dbo63kbt68qei7dYltU+uiMWnSJHR2dvIeg0hI9MnxwayqlJQUBAYGIiEhARs2bEBkZOTQa1paWvDyyy8jOTkZs2fPVs0le/39/ap9sp5af+mQv6utrcUjjzzCewyL6fV6eriYjZMlq+rrr7/Gpk2bMHv2bADAjBkzxLYlJoSHh6OkpIT3GESkO3fuDP3MqImrqyud57BxoheOmpoaBAUFDX0dGBiImpqaEa+5ceMGmpubsWLFCsTFxeHAgQNi20quq6tLtZ82AgICUFdXx3sMQoiNEh1y+O233+KHH34YEXKYnp6OvXv3Dr1m165dyMjIQGpqKrq7u7FkyRJ8//33CAsLG7U9pYQcFhQUwN/fHz4+Plz6i63PyspCWFiYqkPa7LmeMYa0tDQsXbqUS3+x9UVFRZgxYwamT5/OpT/ViydpyOHly5fZY489NvT1u+++y959990Rr3nvvffY7t27h77evn07++abb8xum2fIYWpqKveQMjH1p0+fnlAwnrX6U724+pKSEkE/I1L1F1vf09PDPvnkE279qV48SUMOhWRVPf3007hw4QIGBgbQ1dWFq1evIiIiQmxrYkJUVBQqKip4j0EmqKamBr6+vrzHmDBXV1f09/fzHoNIRPRVVcOzqgwGA7Zv3z6UVQXcjx6JiIjAE088AZ1OBwcHB+zcuRNRUVGih5dKT08P3NzcVH2Cz9fXF62trbzHIITYINmyqt544w288cYb1mgnuZycHOj1eqSnp/MehdghZiOXUru5uVFulY2iO8fH0N3dDQ8PD95jiMYYs5lfQvakvLwc8+bN4z2GaKGhoZRbZaNo4RiDrfyynTlzJj2fQ4Vu3bqlyvs3HuTi4kLnOWwULRwP6Ovrg7OzM+8xrCIgIABlZWW8xyAWYoypKkrdFFt5E0ZGooXjAXl5eYiJieE9hlXYyi8fol6Ojo4YGBjgPQaxMllCDs+ePQsvLy/o9Xro9Xr86le/skZbSbS3t6vu+RvEdjQ1Nani+eJCRUdHo6CggPcYxMpkCTkEgEceeQQnTpwQ205ytvbReurUqWhubsa0adN4j0IEKCgoEHW3uNJ4e3sjNzeX9xjEymQJOVQLW1s0AECn0yE/P5/3GEQgNT3jXihb/Lmyd7KEHAJAWloaYmJi8OSTT6KwsFBsW0ncunULwcHBvMewKicnJzrGTAixKllCDtva2uDg4IDJkyfj5MmTePXVV1FaWjrm9niGHGZlZSE2NnbopDLvkDJr1WdlZWHhwoXc+lO9MP39/SgpKUF0dDSX/lLVV1dXw8XFxeLHKShlfrXWi8U95PBBwcHBrLGx0ey25Q45fDAUkHdImbXqL1y4wHp6erj1p3ph0tPTWVtbG7f+UtUbjUZ2+vRpbv3ttV4s7iGH9fX1Q8c509PTYTQaRcWVE8vExMTQCUoVaG9vx5QpU3iPYXUajYbOc9gYWUIOjxw5gs8//xxOTk5wd3fH4cOHFXePAe+PhVKaMmUK2tvbeY9BzFDazwQh45El5HDXrl3YtWuXNVpJJjc3F/Hx8bzHkAz9UlI2W39HPnnyZJt+c2Zv6M7xv+nt7VXto2KFYBR4qGhlZWU2EWw4Hjpcalto4bATs2fPRnV1Ne8xyDhu37494rJ2W+Pq6qrq59uQkWjhAGA0Gm3+UE5oaOi4l0ATZbD1fZDYDlo4ABQVFY2KSLE19EuJKAEdLrUNsoQcDrp27RocHR1x5MgRa7S1moaGBvj5+fEeg9ip7u5umz6/Nig0NBQ3b97kPQaxAtELx2DIYVJSEoqKinDo0CEUFRWN+bo333wTjz/+uNiWZIKcnZ3pOLMC5efnQ6fT8R5DcoGBgXSezUbIFnK4d+9ePPvssxbHDhDrocBDZers7LSLy1TpcKntEJ1VdeTIESQnJ4/Iqrp69So+/fTTodfU1NTgH//xH3H69Gns2LED69evx3PPPTfm9uTOquru7kZFRcWY5zh4Z81IUW9JbpUS57fF+uzsbMTGxnLrL2f9eH9XufrbU71YkmZVffPNN2zHjh1DXx84cIDt2rVrxGuee+45lpaWxhhjbOvWrezbb78VtG05sqrS0tJYR0fHhOvF9pe7/sE8Lrn7U/1o4+U4qWV+S+ovXbrEuru7ufW3p3qxTP3+FX3neGBgIG7fvj30dXV1NQICAka8JiMjA5s3bwYA3L17FydPnoSTkxOeeeYZse1F6+rqwqRJk3iPQexUfX09Zs6cyXsM2eh0OuTl5SExMZH3KEQE0QvH8JDDWbNm4fDhw/j6669HvKaiomLo37dt24b169crYtEA7O+4q6+vLxoaGuhck0Jcv34djzzyCO8xZDN58mR0dnbyHoOIJPrk+PCQw4iICDz//PNDIYeDQYdKxuzsuvLIyMgxr3ojfBiNRjg40O1URF1kCTkc7n//93+t0dIqGhoa4Ovry3sMWTk6OsJoNPIegxCiYnb9Vqe4uNjm7xgnymUwGOzy08bg4VKiXva31w5jNBrh6OjIewzZaTQa+tShAPYQdTOWiIgIFBcX8x6DiGDXC4e9ougHZWhsbLS7Q6UAHS61BXa7cNjbSfHhKPpBGeztir7h7PnnzxbIEnJ4/Phx6HQ66PV6xMfH4+LFi9ZoK4qtPzjHFHv+hUWUwcHBgT51qJgsIYerV69Gbm4ucnJy8Pvf/x47d+4U21Y0W39wjjm0ePDV19cHZ2dn3mNwExoairKyMt5jkAmSJeRw8uTJQ7+oOjs7FfNLSylz8ODg4ICBgQHeY9itwsJCaLVa3mNwM2vWLDpcqmKyhBwCwNGjR/Hzn/8cDQ0N+P7777FkyZIxtydXyKGQsDXeIWVS1re0tODevXsmD9cpeX6119v7/geY/x4ofX6l14vFPeRwuHPnzrHVq1cL2rZUIYe9vb3swoULE64X218p9eYCD5U+v5rrxws2lKu/EurNfQ+UPr/S68Uy9ftX9KEqISGHwy1btgxlZWW4e/eu2NYTVlBQgKioKG79CSH3D5caDAbeY5AJEL1wDA857Ovrw+HDh7Fhw4YRr7l58+bQ5XdZWVno6+uDj4+P2NYT1traiqlTp3LrT+xbT0+PXTwq1pzw8HCUlJTwHoNMgOisquEhhwaDAdu3bx8KOQTuZ1b96U9/woEDB+Ds7Ax3d3f88Y9/tOsT00rh6uqKnp4euLm58R7FrhQWFtInXgB+fn4oKiqy64sE1EqWkMM333wTb775pjVaESuKjo5Gfn4+EhISeI9iV9ra2uDp6cl7DEImzO7uHG9ra8OUKVN4j6EInp6eaG9v5z0GIURl7G7hoBPjhCiHs7Mz+vr6eI9BLGR3C0dvby8d0x+GzjXJq7u7m/a/YbRaLQoLC3mPQSxkdwsHGWny5Ml0uEpG9Il3pGnTpqG5uZn3GMRCsoQcfvXVV9DpdNDpdFi6dClyc3Ot0ZZYQVRUFPLz83mPYTc6OjroHBtRPdFXVQ2GHKakpCAwMBAJCQnYsGHDiAfUhISE4Ny5c5g2bRqSkpLw4osv4urVq2JbW6y1tRVeXl6y91Uyd3d39PT08B7DbtChQWILZAk5XLp0KaZNmwYAWLx4MbdwM3sPliP8MXoOxShubm7o7u7mPQaxgGwhh4M++ugjlJSUDL3+QVKGHAoJljNVL7a/UuuzsrKwcOFCbv3tpb6npwfl5eWCHxertPmlqu/q6kJVVRUiIiK49LfVerEUE3J4+vRpFh4ezu7evSto29YOORQSLGeqXmx/pdbn5OSwxsZGbv3tpf7KlSuso6ODW38l148VuKmm+ZVYL5YiQg7z8vKwc+dOHD9+nGtOFRktMjJy1MO3iPV1dXVh0qRJvMcgRDRZQg5v3bqFTZs24eDBgwgLCxPbckJaWlroxPg4nJ2d6aFOhBDBZAk5/NWvfoV79+7h5ZdfHqoZ99iZRAoLCxEfHy9rT0KIMIP3E9GlyuogS8jhvn37xj0ZLpe+vj6Ksibc8D7RqXTR0dHIyckZ98mgRFnoznEC4H7EdX19Pe8xbBbdMW6au7s7XZKrIrRwEAD3H6pz/fp13mPYrO7ubri7u/MegxCrsIuFo7m5mZ74Z4ajoyM9xpMQIogsWVUlJSVYsmQJXF1d8dFHH1mjpUXojnFClM/LywstLS28xyACiF44BrOqkpKSUFRUhEOHDo26J8Db2xuffPIJXn/9dbHtJqS/vx8uLi5cehNCDw8TJioqiiLWVUKWrKoZM2YgISEBzs7OYtsRCfn7+6O2tpb3GDaHnjEujKurK3p7e3mPQQQQvXDU1NQgKCho6OvAwEDU1NSI3axVMQqWEyQsLAw3btzgPYbNoYeHEVsj+j6OsX4pi4mOfjDk8OzZsxPeVkdHB44fP47GxkY4OFi+RnZ0dIjur7b6rKwsrv1tsT47O5trfzXV5+TkDP2sqnF+JdVLSmwQ1uXLl9ljjz029PW7777L3n333TFfu3v3bvbhhx8K3rY1Qg7Pnz/P+vr6Jlwvtr/a6oeHzalxfiXWWxquae3+aqrPzMxkTU1N3PrbUr1YkoYcCsmq4qm/v5/OrViI0aE9q6GHh1mGTpCrgyxZVfX19YiPj0dbWxscHBzw8ccfo6ioCJ6enqL/AsS6AgMDUVtbi1mzZvEexSYUFBRQRpoFXFxc0NfXx3sMYoYsWVUzZ87k9tQ/YpnQ0FCcO3eOFg4roYw0Yots+s7x1tZWevaHhRwcHOhQFSHEJJteOCorKwU/ppP8nZir4ggRy9vbG01NTbzHICbY9MJhMBjoxPgE0acO8drb2ykjbQK0Wi2dIFc4m144yMQEBQXROSkrqKyspIy0CaAnUiqfLCGHjDH89Kc/RWhoKHQ63YibzIjyzJs3Dzdv3uQ9huoNDAxQRhqxSbKEHCYlJaG0tBSlpaX44osv8JOf/ERsW7MaGxvp+vkJ0mg0dKiKEDIuWUIOjx8/jh//+MfQaDRYvHgxWlpaUFdXJ7a1ScXFxZgzZ46kPWwZnSAnPHl7e6O1tZX3GGQcsoQc8ghCdHd3h6Ojo6Q9bBljjD51iHDv3j26wVWEyMhIVFVV8R5D1W7fvi3ZtmUJORTymkHWDjmk+onV19fXo7u7W9QnDzX//cXW5+XlITg4WLXzU726641GI/Ly8qDX6yfc3ySxQVhCQg5ffPFF9vXXXw99HRYWxmpra81u2xohh1Q/MUajkf3mN7/h1l/t9adPn1b1/Eqop/1v4vXFxcWspqZGVH/uIYcbNmzAgQMHwBjDlStX4OXlBX9/f7GtiYToHAch6lVXV4eAgADJti9LyOHatWtx8uRJhIaGwsPDA/v37xc9OCHEtnl5eaGxsRG+vr68R1Edqd/4yRJyqNFo8Nlnn1mjFZEZY4w+fViooaEBvr6+uHv3Lu9RVC04OBjFxcW0cEwAk/jCFrpznIzL398fFRUVvMdQnZKSEoSHh/MeQ/UcHR1hMBh4j6E6RqNR8jd7tHCQcfn5+dElkRNgMBjg5GSVD/OEWOzGjRsICwuTtActHGRcdAc5IepTX18v6YlxgBYOQoiC+fr6oqGhgfcYqiLHmz1RC0dTUxPWrFmD+fPnY82aNWhubh7zddu3b8eMGTMQFRUlph3hgD51WKa+vh4zZ87kPYbNCA8PR0lJCe8xyANELRzvv/8+Vq9ejdLSUqxevXrMZFwA2LZtG5KTk8W0IpzMmzcPZWVlvMdQDTmOL9sTJycnOkFuATlOjAMiF47jx49j69atAICtW7fi2LFjY75u2bJl8Pb2FtOKcBIUFCRp5o2tMRgMlJFGuJHrjYuohePOnTtDd4D7+/vTsUgbRPdwEKIecpwYBwANM3MA+9FHH0V9ff2o//7OO+9g69ataGlpGfpv06ZNG/c8R2VlJdavX4+CggKTAz0Ycnj48GFzf4dxdXR0YPLkyVQvsj47OxuxsbHc+qupfvj3So3zK7G+srISnp6eFh+1UMr8ctZP9Gd1LK+//joyMjLG/kMxIVjDwwpra2tZWFjYuK+tqKhgWq3Wou1TyKEy6s+cOcMMBgO3/mqpr6mpYSUlJdz622r9wMAAO3v2LLf+aqo/ffq0qJ7DSRZyuGHDBvzhD38AAPzhD3/A008/LWZzRKHmz59Pj5IV4MaNG5g/fz7vMWyOo6MjjEYj7zEUz2g0wsFBnjssRHV56623kJKSgvnz5yMlJQVvvfUWAKC2tnZEdtWWLVuwZMkSXL9+HYGBgfjyyy/FTU1kFRAQIPmDt2wBY0y2H1xCHiTnFX2ichF8fHyQmpo66r8HBATg5MmTQ18fOnRITBvCGZ0gF4a+T4Snuro62TLS6O0RIVbA6FG7kvL390ddXR3vMcjf0MJBBNFoNHSc2YTq6moEBgbyHsNmhYWF4caNG7zHIH9DCwcRhH5wTSsrK0NoaCjvMWyWg4MDvXExQc4T4wAtHESggIAAOlRgAqMHXhGO5I66kTzk8Pbt21i5ciUiIiKg1WqxZ88eMS0JIYQ8oK6ubijFQw6Shxw6OTnh17/+NYqLi3HlyhV89tlnKCoqEtOWEEWhk+LyCAgIQG1tLe8xCGQIOfT398fChQsBAFOmTEFERATdE6BSDg4OlFQ6Bjq/IY/58+ejtLSU9xiKJPdhUrNZVaZMnTpVcFYVcD+vatmyZSgoKICnp+eYr6GsKuXWNzU1oa2tDXPmzOHSX6n12dnZ0Ov1o3541TK/muotyWJS4vxS1BsMBhQUFCAmJmbCvcYiKqtq9erVTKvVjvrn2LFjzMvLa8Rrp06dOu522tvb2cKFC9mf/vQnASkp91FWlfLqLcnCUeL8UtSP9z1Ry/xqqqf9b7Tc3FzW2NgoqtdYTP3+NXvn+KlTp8b9Mz8/v6GTMnV1dZgxY8aYr+vv78ezzz6LH/3oR9i0aZOw5Y4QQsbA6Aq2Ee7duwedTidrT8lDDhlj2LFjByIiIvCv//qvYtoRojgGg4HyqWQUGBhI50gVQPKQw0uXLuHgwYM4ffo09Ho99Hr9iBwroi6Ojo4YGBjgPYZiFBcXy5YPRO4/ypiSmvmTPOTw4YcfpssVbUh4eDhKSkoQFRXFexRFaGhooO+FjBwcHOj3yTA9PT1wc3OTvS99xiYWmTFjBhobG3mPoRh0rJ3wVFBQwOWNCy0chIhA7375oO/7fe3t7ZgyZYrsfWnhIGSC+vr64OzszHsMuxMUFITbt2/zHsOu0cJBLObk5EQnyHH/MEF0dDTvMezOvHnzUFZWxnsMuyZ5yGFPTw8SExMRExMDrVaL3bt3i2lJFCAyMpLyxgC0tLRg6tSpvMewO3Re6b62tjYuh6kAGUIOXV1dcfr0aeTm5iInJwfJycm4cuWKmLaEMx8fH9y7d4/3GITYNZ6feCUPOdRoNEN5K/39/ejv76d3DMQm0H7Ml72fIO/r64OrqyuX3rKEHBoMBsTFxeHmzZt45ZVX8MEHH4y7TQo5VEe9kLA5Jc8vtr6npwfl5eWIjIzk0t/e6+vr62E0GhEQEMClvxLqc3JyoNfrJ7x9cxQRcsgYY83NzWzFihUsPz/fXFvGGIUcKrn+woULrLe3l1t/3vVpaWmso6ODW397rzcajWYDD5U8vzXqLQl8nAjuIYeDpk6dihUrViA5OZnutlW5wRPkUr7jUbKuri5MmjSJ9xh2y94PEzY0NMDX15dbf8lDDhsbG4cOZ3V3d+PUqVOU7WMDvL29TT57hRAineLiYkRERHDrL3nIYV1dHVauXAmdToeEhASsWbMG69evFz85IcSuOTs7o7+/n/cYXBiNRjg6OnLrL3nIoU6nQ3Z2tpg2hChKS0sLvLy8eI9h96KiolBQUCD4iYDEeujOcTJhkydPRnt7O+8xZJefn093jCvAg1d12gumgAdZ0cJBJkyn0yEvL4/3GLLr7++Hi4sL7zGInbp16xZmz57NdQZaOMiEubq6oq+vj/cYhNiV8vJyhISEcJ2BFg5CLMDs/G5lpfH09ERrayvvMWSn6kNVQkIOBxkMBsTGxtIVVTaGMWZXv0zLysowb9483mOQv4mOjkZBQQHvMeyO5CGHg/bs2cP1umMijeDgYNy6dYv3GLJRwvFl8ncuLi52dbi0v79fEc+AkTzkELifOfX9999j586dYtoRBZo7dy7Ky8t5jyEr3ocJiP1SyhV9soQcPvfcc/j5z3+O9vZ2fPTRRzhx4sS426SQQ/XVZ2VlYeHChdz6y1k/3t9Vrv5UP1p2djb0ev2oBV0t81tSLyRc1Fq4hhz+5S9/YT/5yU8YY/dDu9atW2eVkC0hlB5SZiv1qampXPvLVd/d3c0uXbrErT/Vj620tJTdunWLW38566UONhyOa8jhpUuX8Oc//xknT55ET08P2tra8MILL+D//u//hC99RNGcnJwUc+xVSnl5edDpdLzHIA+YN28ezp49i6CgIN6j2A3JQw7fe+89VFdXo7KyEocPH8aqVato0bAx0dHRyM/P5z2G5Do7O0UdeiDSsJdzTrwTcYeTPOSQ2L5p06bZZfQDIXLinYg7nOQhh8OtWLECK1asENOSKBSzg3s57OHvqFZubm7o7u6Gu7s771EkwzsRdzi6c5xYha0fLqivr8fMmTN5j0HGERMTg9zcXN5jSEpJb1xo4SBW4efnh/r6et5jSKakpIQeQKZgHh4e6O7u5j2GZAYGBhTzaQOghYNYSUREBIqLi3mPIRnGGBwc6MeF8FFYWKiox23LklU1Z84cREdHQ6/XIz4+XkxLolAODg6K+ihN7JOt7oNNTU3w8fHhPcYQ2bKqzpw5g5ycnPHvRCREobq7u+Hm5sZ7DGLGvHnzUFZWxnsMSShtQZQlq4rYh8ErW2xNbm4uYmJieI9BzAgKCsLt27d5j2EXRC0cd+7cgb+/PwDA398fDQ0NY75Oo9HgscceQ1xc3FAOFbE9MTExyMnJ4T2G1XV3d8PDw4P3GMQMW72yr66uTnFX9JkNOXz00UfHvFrmnXfewdatWwWFHNbW1iIgIAANDQ1Ys2YN9u7di2XLlo3Zj0IO1V0/PARQjfOPVW9JsKEU/aleuOEhgGqcf6z6nJwcxMTEyL4wigo5NCUsLIzV1tYyxhirra1lYWFhZmt2797NPvzwQ0Hbp5BD9dUPDzxU4/wP1hsMhgkHyylhfnurv3btGmttbeXWX4p6OYMNhzP1+1fyrKrOzk60t7cP/ftf//pXRV1WRqzPaDTyHsFqiouLERkZyXsMIpBOp0NeXh7vMWye5FlVd+7cwcMPP4yYmBgkJiZi3bp1eOKJJ8RPThRpwYIFuHHjBu8xrKahoQF+fn68xyAC2doTAdva2hQZrCl5VtXcuXNtPgqA/N2sWbNw+vRpm7nLminsMkhiX/Ly8pCYmMh7jFHoVlhCiE1xdXVFb28v7zGsoq+vDy4uLrzHGIUWDmJ1tvIuvampSXGXQRLz9Hq9TV4WriS0cBCr8/f3R21tLe8xRKuqqrKZQ272ZNKkSejs7OQ9hmhKfqomLRzE6iIiIlBSUsJ7DNEYBRsSjsrKyhSbWCBLyGFLSwuee+45hIeHIyIiAmlpaWLaEoWz1Tt4iXo4OTlhYGCA9xiidHV1wdPTk/cYY5Il5PDVV1/FE088gZKSEuTm5irm8YeEjOfu3buK/aEl5sXExNhs4KESSB5y2NbWhvPnz2PHjh0A7l9nPXXqVDFtiQrMnDkT9+7d4z3GhOXn52Pu3Lm8xyAT5OXlperzHEajUdGHSSUPOSwvL4evry/++Z//GbGxsdi5c6eq/4cSYSIiIlBVVcV7jAmj8xuEp/z8fISEhPAeY1yShxxmZGRg8eLFuHTpEhYtWoRXX30Vnp6e+M///M8x+1HIoe3UX7p0CQ899BC3/mLqs7KyEBYWpurvv73Xp6WlITExccKPXFX7/icW15DDuro6FhwcPPT1+fPn2dq1awVtn0IO1V3/61//mmv/idbfuXOH5eXlcf/+Ub24+mPHjrGcnBxu/cXUp6amiu4vFteQw5kzZyIoKAjXr18HAKSmplJonJ3w9vZGXV0d7zEsVlhYCK1Wy3sMIpKXl5cqz7P19/fDyUlUGpTkJA85BIC9e/fiRz/6EXQ6HXJycvD222+Lm5qoQnBwMIqLi3mPYTFG5zdsBlNhisHwZ4ooleQhh8D9CAB61rj90Wg0NhWxTtTH0dERAwMDin8HP1xHRwemTJnCewyT6G0VkZTabgZU4mM6ycTFxsYiOzub9xg2hxYOIim15VYVFxfTDao2xMvLC21tbbzHEKy7uxtubm68xzCLFg4iqfDwcFXlVjHGVPcpiZimpv+f2dnZE3q+vdxo4SCS0mg0qjlBqZY5iWWmTJmimk8dvb29tv+JQ0jI4fXr16HX64f+8fT0xMcffyymLVEZBwcHGAwG3mOYdePGDYSFhfEeg1iZms5zqOXNi+QhhwsWLEBOTg5ycnKQmZkJDw8PbNy4UUxbojJ6vV4Vjw+urq5GUFAQ7zGIlaklKbe1tVU1wZqShxwOl5qainnz5iE4OFhMW6Iy06ZNGxFNQwgZLScnR/H3bwwym1VlytSpU81mVQ23fft2LFy4ELt27Rr3NZRVZZv1mZmZiIuL49bfnN7eXpSWliIqKopLf6qXtv727dtwcXGBn58fl/5CZGVljTgxLra/WKKyqlavXs20Wu2of44dO8a8vLxGvHbq1Knjbqe3t5f5+Piw+vp68yEpf0NZVbZTf+3aNdbc3MytvzkXLlxgPT093PpTvbT1RqORnTp1ilt/cwwGAzt9+rRV+4tl6vev2dspT506Ne6f+fn5oa6uDv7+/qirq8OMGTPGfW1SUhIWLlxo0YpPbEdsbCzOnz+PlStX8h5lTL29vXB1deU9BpGI0i/JzcvLg06n4z2GYJKHHA46dOgQtmzZIqYdUTFHR0eKHyFcKfnqvnv37sHHx4f3GILJEnLY1dWFlJQUbNq0Sdy0RPWYAi83LC8vp6f92YG4uDhkZmbyHsMmyBJy6OHhocp4Y2Jdg3eRKy3So6KiAqtXr+Y9BpGYp6cn2tvbeY8xSmNjI3x9fXmPYRG6c5zIZtasWaipqeE9BiGKkp+fj+joaN5jWIQWDmLX1BIqR6wjODgYlZWVvMcYgakwH40WDiIrX19fNDY28h5jSEZGBhISEniPQWQSGhqKsrIy3mMMUcPT/sZCCweRlU6nQ15eHu8xhvT19cHFxYX3GMROZWVlWXxjrBJIHnIIAL/97W+h1WoRFRWFLVu2oKenR0xbomJK+khuMBjg6OjIewwiMx8fH8VcrNPe3s717vCJkjzksKamBp988gkyMjJQUFAAg8EgKkaEqJ+Hhwc6Ozt5jzGhGBSifjExMYoI3VTjuY1BsoQcDgwMoLu7GwMDA+jq6kJAQICYtkTlEhIScO3aNd5joL29XfHPdibWp5RnxGRnZ0Ov1/MeY0JkCTncs2cP/v3f/x3u7u547LHH8NVXX427TQo5tI96Ie/2pexvNBqRk5Nj8mlrSv7+Ub24+uLiYsyePRuTJk3i0h8w/zNg1yGHTU1NbOXKlayhoYH19fWxp59+mh08eFB0yJYQSgpZo/qRLl++zDo6Orj1v3r1KmtpaeHWn+r51g8MDIwKFZSzv9FoZCkpKZL2F4tryOGpU6cQEhIydGfkpk2bcPnyZbzwwgsC1z1iixISEnDx4kWsWLGCS/+2tjZ4eXlx6U34c3R05JpblZOTo9rDVIAMIYezZ8/GlStX0NXVBcYYUlNTFRc5QeTH86lsAwMDdDUVwfTp07ndU3Tv3j1Mnz6dS29rkDzkcNGiRXjuueewcOFCREdHw2g04sUXXxQ/OVE9Hx8f3L17V/a+6enpdNMf4XZ1lS28cZEl5PCXv/wlfvnLX4ppRWyQXq9HamoqHn30UVn7dnZ2qvLaeWJdGo2GS9T/1atXsWjRItn7WhPdOU644XENe0tLC53bIEPCwsJw48YNWXt2dXXBw8ND1p7WRgsH4Wr+/Pm4fv26bP0yMjIQHx8vWz+ibHPmzJE19PDevXvw9vaWrZ9UaOEgXAUHB+PWrVuy9TMajXBwoN2e/J2TkxP6+/tl6ZWVlWXy3iG1oJ8gwp2bmxu6u7sl76PG5x4Q6S1ZsgRpaWmS92F/u9darTEjw8kScrhnzx5ERUVBq9Xi448/FtOS2CC5fnDr6+vh7+8veR+iLu7u7rIEr2ZlZSE2NlbyPnKQPOSwoKAA//M//4P09HTk5ubixIkTKC0tFdOW2JjBQwVMwvygpqYmTJs2TbLtE3VbsGABSkpKJO2h9ns3hpM85LC4uBiLFy+Gh4cHnJycsHz5chw9elRMW2KD4uLikJmZKdn2MzIyKAmXjCs4OBi3b9+WbPuVlZUIDg6WbPtykzzksLi4GE8//TTS0tLg7u6O1atXIz4+Hnv37h1zmxRyaL/16enpSExMtHr/vr4+FBUVWRzxoLbvH9WLqy8tLYWPj8/QVU/W7H/t2jWLbzq165BDxhjbt28fi42NZY888gj7l3/5F/baa6+JDtkSQskha1Q/Wnl5OSspKbF6/5SUFNbf3z/herH9qV499cnJyVbv39DQwK5duzbhel64hhwCwI4dO7Bjxw4AwNtvv43AwEAB6x2xNyEhIUhKSsKCBQusts3ByyzV+FxnIj9vb2/cvXvXquciMjMz8cQTT1hte0ogecghADQ0NAAAbt26he+++w5btmwR05bYsMjISBQWFlpte+fOncPy5cuttj1i2+Lj4636kLE7d+6M+4ZazSQPOQSAZ599FpGRkXjqqafw2Wef0dUtZFzWvCGws7MTbm5ucHZ2tsr2iO3TaDQICgpCVVWVVbaXkZFhEzf8PUiWkMMLFy6IaUPsTEJCAq5cuSJ6OwUFBfjZz35mhYmIPYmKisLJkydF50lVVlba7KddunOcKM706dPR09Mj6m7ykpISzJo1yybu0iXyi42NFXVfh9FoRH19PUJCQqw4lXLQwkEUafny5cjOzp5QbX9/PyoqKugiDDJh/v7+6O3tRVNT04TqU1JSbOYu8bHQwkEUSaPRIDw8HJcvX7a4Njk5WfZnfBDbo9PpcO7cOYsTDQoKCjB37ly4urpKNBl/tHAQxfL29sakSZMsil0/f/48Fi9eTCfEiWgajQaPP/44vv/+e8E1t2/fRltbG+bPny/hZPyJWji+/fZbaLVaODg4jH+HIe6/A1ywYAFCQ0PHzLMiZDwxMTFoa2sTdLz5woULCAwMhK+vrwyTEXvg4eGBRYsWISkpyewnj9raWpSWlmLp0qUyTcePqIUjKioK3333HZYtWzbuawwGA1555RUkJSWhqKgIhw4dQlFRkZi2xM4kJCSgt7d33MMGPT09OHHiBObNm4e5c+dymJDYMl9fXyxduhTHjh1DW1vbmK/JzMxEVVUVVq1aJfN0fIi6HDciIsLsa9LT0xEaGjr0A71582YcP34ckZGRYloTOxMTE4PW1lakpKTAwcEB7u7ucHBwQFdXFzQaDZ588kk4OjryHpPYKC8vLzzzzDO4fPkyurq64ObmBldXV7S3t8NgMECr1WLWrFm8x5SNqJDDQStWrMBHH3005iM5jxw5guTkZOzbtw8AcPDgQVy9ehWffvrpmNuikEOqN1fPGMPAwACMRqPJE5BKnZ/q1V8/MDCA/v5+uLu7c+kvB8lCDgctX7583BCvb775hu3YsWPo6wMHDrBdu3aJDtkSQo0ha1RP9VRP9daoF0uykEMhAgMDR+TcV1dXIyAgQNQ2CSGE8CP55bgJCQkoLS1FRUUF+vr6cPjwYWzYsEHqtoQQQiQiauE4evQoAgMDkZaWhnXr1uHxxx8HMDLk0MnJCZ9++ikef/xxRERE4Pnnn4dWqxU/OSGEEC5EXVW1ceNGbNy4cdR/fzDkcO3atSPScgkhhKgX3TlOCCHEIrRwEEIIsQgtHIQQQixCCwchhBCL0MJBCCHEIrRwEEIIsQgtHIQQQixilZBDqUyfPh1z5syZcH1jY6OoZzNQPdVTPdWrtV6syspK3L17d+w/lC0xiwOxIYlUT/VUT/VqrZcSHaoihBBiEVo4CCGEWMSmF44XX3yR6qme6qneLuulpOiT44QQQpTHpj9xEEIIsT7VLxzJyclYsGABQkND8f7774/6c8YYfvrTnyI0NBQ6nQ5ZWVkW1ZeUlGDJkiVwdXXFRx99ZHH/r776CjqdDjqdDkuXLkVubq5F9cePH4dOp4Ner0d8fDwuXrxoUf2ga9euwdHREUeOHLGo/uzZs/Dy8oJer4der8evfvUri/ufPXsWer0eWq0Wy5cvt6j+ww8/HOodFRUFR0dHNDU1WbSN1tZWPPXUU4iJiYFWq8X+/fstqm9ubsbGjRuh0+mQmJiIgoKCoT/bvn07ZsyYgaioqDH/7ub2P3P15vY/c/Xm9j9z9eb2P3P1g8bb/8zVm9v/hPQ3tf+Zqze3/5mrN7fvmas3te9xxfeiLnEGBgbY3LlzWVlZGevt7WU6nY4VFhaOeM3333/PnnjiCWY0GllaWhpLTEy0qP7OnTssPT2dvf322+zDDz+0uP+lS5dYU1MTY4yxkydPWty/vb2dGY1Gxhhjubm5bMGCBRbVD75u5cqV7Mknn2TffvutRfVnzpxh69atG7VNofXNzc0sIiKCVVVVDX0/LZ1/0J///Ge2cuVKi2d455132M9+9jPGGGMNDQ1s2rRprLe3V3D966+/zv7jP/6DMcZYcXExW7Vq1dCfnTt3jmVmZjKtVjvmzKb2PyH1pvY/IfWm9j8h9ab2PyH1jI2//wmpN7X/Cak3tf8JnX/QWPufuXpT+56QelP7Hk+q/sSRnp6O0NBQzJ07Fy4uLti8eTOOHz8+4jXHjx/Hj3/8Y2g0GixevBgtLS2oq6sTXD9jxgwkJCTA2dl5Qv2XLl2KadOmAQAWL16M6upqi+onT54MjUYDAOjs7Bz6d6H1ALB37148++yzmDFjhsXzmyKk/uuvv8amTZswe/ZsABgxg6X9Dx06hC1btlg8g0ajQXt7Oxhj6OjogLe3N5ycnATXFxUVYfXq1QCA8PBwVFZW4s6dOwCAZcuWwdvbe9yZTe1/QupN7X9C6k3tf0LqTe1/QuqB8fc/ofWmmKs3tf9Z2n+s/c9cval9T0i9qX2PJ1UvHDU1NQgKChr6OjAwEDU1NYJfI6RebP/hvvzySzz55JMW1x89ehTh4eFYt24dfv/731tUX1NTg6NHj+Kll16a8PxpaWmIiYnBk08+icLCQovqb9y4gebmZqxYsQJxcXE4cOCAxf0BoKurC8nJyXj22Wct/jvs2rULxcXFCAgIQHR0NPbs2QMHBwfB9TExMfjuu+8A3F9oqqqqRv0CHo/YfcyaHtz/hBpv/xPC1P4n1Hj7nxCm9j9LjLf/mWNq3xNCzL4nJVGPjuWNjXFB2IPviEy9Rki92P6Dzpw5gy+//HLEMWKh9YOP6D1//jx+8Ytf4NSpU4LrX3vtNXzwwQdwdHSc0PwLFy5EVVUVJk+ejJMnT+KZZ55BaWmp4PqBgQFkZmYiNTUV3d3dWLJkCRYvXoywsDCLvn9/+ctf8NBDD416dyZkGz/88AP0ej1Onz6NsrIyrFmzBo888gg8PT0F1b/11lt49dVXodfrER0djdjY2BHvGk0Ru49Zy1j7n1Dj7X9CmNr/hDC1/wlhav+zxHj7nzmm9j0hxOx7UuI/gQiBgYG4ffv20NfV1dUICAgQ/Boh9WL7A0BeXh527tyJpKQk+Pj4WFw/aNmyZSgrK8Pdu3cxffp0QfUZGRnYvHkzAODu3bs4efIknJyc8MwzzwiqH76Dr127Fi+//LJF/QMDAzF9+nRMmjQJkyZNwrJly5Cbm4uwsDCL/v6HDx8edZhgcPvmtrF//3689dZb0Gg0CA0NRUhICEpKSpCYmCj4ezB4UpMxhpCQEISEhIw550Tmk9p4+5+lHtz/hDC1/wlhav8TwtT+Z4nx9j9zTO17QojZ9yQl/2kV6+nv72chISGsvLx86MRmQUHBiNecOHFixMnJhIQEi+oH7d69e9TJSSH1VVVVbN68eezSpUsTmr+0tHTo5GRmZiYLCAgY+tqS+RljbOvWrSNOTgqpr6urG+p39epVFhQUZFH/oqIitmrVKtbf3886OzuZVqtl+fn5Fs3f0tLCpk2bxjo6Oib0PXzppZfY7t27GWOM1dfXs4CAANbY2Ci4vrm5eeiE5hdffMH+6Z/+acSfV1RUjHty09T+J6R+0Fj7n5B6U/ufkHpT+58l8zM2ev8TUm9q/xNSb2r/Ezq/qf3PXL2pfU9Ivbl9jxdVLxyM3b9qZf78+Wzu3Lnsv/7rvxhjjH3++efs888/Z4wxZjQa2csvv8zmzp3LoqKi2LVr1yyqr6urY7NmzWJTpkxhXl5ebNasWay1tVVw/Y4dO9jUqVNZTEwMi4mJGRVcZq7+/fffZ5GRkSwmJoYtXryYXbhwwaL64cb6wTVXv3fvXhYZGcl0Oh1btGjRqF9AQvr/93//N4uIiGBarZb99re/tbh+//797B/+4R9G/X2EbqOmpoatWbOGRUVFMa1Wyw4ePGhR/eXLl1loaChbsGAB27hx49BVSowxtnnzZjZz5kzm5OTEZs2axfbt22fR/meu3tz+Z67e3P5nrt7c/meufrix9j9z9eb2PyH9Te1/QupN7X/m6s3te+bqTe17PNGd44QQQiyi6quqCCGEyI8WDkIIIRahhYMQQohFaOEghBBiEVo4CCGEWIQWDkIIIRahhYMQQohFaOEghBBikf8HRbffIf/yyAsAAAAASUVORK5CYII=",
|
||
"text/plain": [
|
||
"<Figure size 360x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"import numpy as np\n",
|
||
"import matplotlib\n",
|
||
"\n",
|
||
"# Agg 后端 = Anti-Grain Geometry 后端\n",
|
||
"# 不需要弹窗口、只想“静默”出图(服务器、脚本、批量、CRON、Web 后台)就用 Agg\n",
|
||
"#matplotlib.use(\"Agg\")\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"\n",
|
||
"# 新建图窗:宽 5 英寸、高 4 英寸,分辨率 72 dpi(Agg 后端,仅供保存)\n",
|
||
"fig = plt.figure(figsize=(5, 4), dpi=72)\n",
|
||
"\n",
|
||
"# 添加几乎铺满整张图的坐标轴,边距仅 1 %\n",
|
||
"axes = fig.add_axes((0.01, 0.01, 0.98, 0.98))\n",
|
||
"\n",
|
||
"# 生成 0→2 的 200 个等距点,作为横坐标\n",
|
||
"x = np.linspace(0, 2, 200)\n",
|
||
"# 计算 1 Hz 正弦波,y = sin(2πx)\n",
|
||
"y = np.sin(2 * np.pi * x)\n",
|
||
"\n",
|
||
"# 绘制正弦曲线:黑色、线宽 0.25 pt\n",
|
||
"plt.plot(x, y, lw=0.25, c=\"k\")\n",
|
||
"\n",
|
||
"# 设置坐标轴刻度密度:x 每 0.1 一格,y 每 0.1 一格\n",
|
||
"plt.xticks(np.arange(0.0, 2.0, 0.1))\n",
|
||
"plt.yticks(np.arange(-1.0, 1.0, 0.1))\n",
|
||
"\n",
|
||
"# 打开网格线,便于观察波形\n",
|
||
"plt.grid()\n",
|
||
"\n",
|
||
"# 在非交互 Agg 下,plt.show() 不会弹窗;如要保存可改用 plt.savefig(\"sin.png\")\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.11"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|