Files
jupyter-collection/scientific-computing-2/auto_examples_jupyter_2/plot_ugly.ipynb
2025-10-21 11:20:44 +08:00

87 lines
12 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"# A example of plotting not quite right\n",
"\n",
"An \"ugly\" example of plotting.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEoCAYAAABPQRaPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAALEwAACxMBAJqcGAAAH09JREFUeJzt3W1sW1cdBvAna9QPVKwZ7dImcioaOTNputLNilYmXs6fNMrwwEFtmQKbCLSVCYs0EGQiQvBhSBXeB8TGWlRHm0q6QSMVsXoaaSFNHV7G+hIQRRC2RpCKJE2HuqYro5tCw+VDl6zGcRz7XPvcl+cnXa32Pb7nb/ue8xxf12uZZVkWiIiIlugW0wUQEZG7MDiIiCgvDA4iIsoLg4OIiPLC4CAiorwwOIiIKC/lpgtYzMqVK7F27VrTZRAR+c7rr7+OS5cuLbjP0cGxdu1aJBIJ02UQEflOV1dX1n28VEVERHlhcBARUV4YHERElBcGBxER5YXBQUREeWFwEBFRXhgcRESUFwYHERHlhcFBRER5YXAQEVFeHP2/HPEyETX/51RqyFAVRET5Y3AYIKIA3AgMEQURxfCgohNRGffxvKNCMDhKSETN/3luwDI8qBREFID0oBBRDBMqCIOjBETU/J8XGpQMDyomEQUg89xb6Fyba0u0GH45XmQiCsCNQbpYKMztm2tPZIqIMlwBOR2Do4hEFIClf/RneJDdRBSA/M9BosUwOIpERAHIfyAyPMguIgpAYWEw91iihTA4iqjQ1RvDg+xSyDnI849yYXAUgYjSPgYHL+kQUVqP5yUrWgyDo0jsGHgcvFQIEQXAnvNn7lhEN2Nw2ExEGa6A/ExEAeDChYqLwVEEdg84EWXr8cjbeP5RsTE4bCSibD8mV320VCLK9mPy/KOFMDhsVqyBJqKKclzyFp5/VAoMDpuIqKIdm6s+ykVEFe3Y/Bt+9P8YHEQeUcwFBhcvdDMGh42KPbhEVFGPT5SLiDJcATkBg8MGIqrofXDFR9mIqJL0w3OQ5jA4bFKqQSWiStIPuQsndSolBocmEVWyvjg5kBOIKMMVkGkMDhtwQidTRFRJ++O5TgCDQ4uI8lW/5EyczKnUGByaSj1oOUmQE4gowxWQSbYEx7FjxxAKhRAMBhGPxzP2v/HGG/jUpz6FD37wg2hoaMCBAwfs6NYoEeXr/sk8EWWkXy5eSDs4Zmdn0dnZiaNHj2JkZASHDh3CyMhIWpt9+/Zhw4YNOHv2LIaGhvD1r38dMzMzul37FgcuzeG5QCZoB8fp06cRDAZRW1uL5cuXo62tDclkMq1NWVkZ/vWvf8GyLLz55pt43/veh/Lyct2ujeOgJT8TUYYrIGMsTYcPH7Z27do1f/vgwYNWZ2dnWpurV69aSilr7dq11ooVK6wXX3wx6/ESiYQVDoetcDhsAXDwZjmgf9M1cPP3+2+6f27F3MLhcNZ5WnvZb1lWxn1lZWVpt3/xi19g8+bNOHHiBP72t7+hubkZH/nIR3DrrbdmPDYWiyEWiwEAQqEQEomEbom2E1EAgFQqZbCKIYgowzWQKSJzn3jNvf83auD551VdXV1Z92lfqgoEAhgfH5+/PTExgerq6rQ2Bw4cwLZt21BWVoZgMIj169fjlVde0e3aKKdcphJRhiugUhNRhit4l4gyXAGZoB0cjY2NGB0dxdjYGGZmZtDX14doNJrWZt26dRgcHAQAvPbaa3j11VdRW1ur27XvOSW8yJ94/vmX9qWq8vJy7N27Fy0tLZidncXOnTvR0NCA/fv3AwA6Ojrw7W9/G1/4whdw5513wrIsPP7441i9erV28SaIKMMVEHHSJrNs+atNkUgEkUgk7b6Ojo75P1dXV+OXv/ylHV0R+ZqIMlxBJhHFIPMZ/nK8AE4bJCLKcAVUSk47/8h/GBwux0mETOL5508MjjyIKMMVkJ+JKMMVEN3A4MiTU1dYIspwBVQKPP/ICRgcRKTFqWFGxcPgWCIRZbiC7DhwiaiUGBx54ARNpogowxXkJqIMV0ClwuDwEBFluAIqJicvXJxcG9mPweERHLhEVCoMjiUQUYYrIHIHEWW4AioFBscScUVPpogowxUsDceIfzA4PEZEGa6AioGTMjkJgyMHEWW4gqXj5EJOIKIMV0DFxuBYAk7IRETvYnAQOZiIMlxBfrjI8gcGhweJKMMVkJ04GZPT2BIcx44dQygUQjAYRDweX7DN0NAQNm/ejIaGBnzsYx+zo9uiE1GGK8gfJxkiKjbt4JidnUVnZyeOHj2KkZERHDp0CCMjI2ltrly5gocffhgvvPAC/vKXv+Dw4cO63ZYMJ2Ki/IkowxVQMWkHx+nTpxEMBlFbW4vly5ejra0NyWQyrc1PfvITbNu2DevWrQMAVFZW6nZLOYgowxWQLhFluILCcLHlfdrBMTk5iZqamvnbgUAAk5OTaW3OnTuH6elpKKUQDodx8OBB3W6LTkQZroCIkzA5U7nuASzLyrivrKws7fb169fx+9//HoODg3jrrbfwoQ99CFu2bMEdd9yR8dienh709PQAuBE4IqJbYoEsAGUw1r02y+BrR/Zw83vo5toJAMLhcNZ92sERCAQwPj4+f3tiYgLV1dUZbVavXo0VK1ZgxYoV+OhHP4qzZ88uGByxWAyxWAwAEAqFkEgkdEssiAiQSqWM9G0Ht9dP7n4Pb2SGxU9MLtbV1ZV1n/alqsbGRoyOjmJsbAwzMzPo6+tDNBpNa9Pa2orf/OY3uH79Oq5du4ZTp06hvr5et2vKQUQZroAKJaIMV6CHgeFt2p84ysvLsXfvXrS0tGB2dhY7d+5EQ0MD9u/fDwDo6OhAfX097rvvPmzatAm33HILdu/ejY0bN2oXT9mlUkOun3z8jpMvOZV2cABAJBJBJBJJu6+joyPt9qOPPopHH33Uju6KTkQZroCIyLn4y/EsuNoj0ieiDFdAxcDg8DgRZbgCypeIMlyBPbj48i4Gh4dx4LoX3ztyMgbH/xFRhisgInI2BscCuNojso+IMlwB2Y3B4QMiynAFtFQiynAFRLkxODyOn57cx0vvmZeeC72LwUFERHlhcNxERBmugIjI+Rgc/4cfrckUEWW4guIRUYYrIDsxOHxCRBmugJbCiwsXLz4nv2Nw+AAHLhHZicHxDhFluAIiIndgcNyEK3MyRUQZrqD4RJThCsguDA4fEVGGK6DFeHnh4uXn5kcMDiIiyguDA/5YiXPFR0R2sSU4jh07hlAohGAwiHg8nrXdmTNnsGzZMvz0pz+1o1sichkRZbgCsoN2cMzOzqKzsxNHjx7FyMgIDh06hJGRkQXbfeMb30BLS4tul0XBFTmZIqIMV1AaHGPeoR0cp0+fRjAYRG1tLZYvX462tjYkk8mMdk899RS2b9+OyspK3S5Jg4gyXAEthJMquUm57gEmJydRU1MzfzsQCODUqVMZbZ5//nmcOHECZ86cWfR4PT096OnpAQCcO3cOIqJb4hJYJerHCfz0XN3CT++Jn56ru4XD4az7tIPDsqyM+8rKytJuf/WrX8Xjjz+OZcuW5TxeLBZDLBYDAIRCISQSCd0SFyWiAACpVKqo/TiFiH+eq1v46T25kRkWP2G5QFdXV9Z92sERCAQwPj4+f3tiYgLV1dVpbYaHh9HW1gYAuHTpEvr7+1FeXo5Pf/rTut3bgicxmSKiDFdAlD/t7zgaGxsxOjqKsbExzMzMoK+vD9FoNK3N2NgYzp8/j/Pnz2PHjh344Q9/6JjQIKLS4SLNG7SDo7y8HHv37kVLSwvq6+vxwAMPoKGhAfv378f+/fvtqJFsJqIMV0A342RKbqN9qQoAIpEIIpFI2n0dHR0Ltv3Rj35kR5e2EFGGKyi9VGrIl8+biOzj+1+Oc7VHVHoiynAFpMP3wUFkiogyXIEZXKy5H4PDp0SU4QoI4CRK7sTg8CFOVkSkw7fBIaIMV0BE5E6+DQ6AK28ik0SU4QqoUL4ODiJTRJThCszios3dGBw+JqIMV+BvnDzJrRgcPsVJi4gK5cvgEFGGKyAici9fBgfAFTeRE4gowxVQIXwbHHSDiDJcgf+IKMMVOAMXb+7F4CAygJMmuZnvgkNEGa7AOTh5EVEhfBccRESkx5fBwZU2mSKiDFfgPCLKcAWUL18GB6UTUYYrIL/iIs6dbAmOY8eOIRQKIRgMIh6PZ+z/8Y9/jE2bNmHTpk249957cfbsWTu6JRtw4JYeX3NyO+1/OnZ2dhadnZ0YGBhAIBBAY2MjotEoNmzYMN9m/fr1+NWvfoXbbrsNR48eRSwWw6lTp3S7zpuIKnmfREReo/2J4/Tp0wgGg6itrcXy5cvR1taGZDKZ1ubee+/FbbfdBgDYsmULJiYmdLslIiJDtD9xTE5OoqamZv52IBBY9NPEM888g0984hNZ9/f09KCnpwcAcO7cOYiIbok3sQCUwdZDeoJl8+tMC7MAgK91BuudqwFlZsugNOFwOOs+7eCwLCvjvrKyhU+AVCqFZ555Br/97W+zHi8WiyEWiwEAQqEQEomEbonzRG7UQOluzGMWr70X2Y3zbwgAz8F0QxBRHJsO09XVlXWf9qWqQCCA8fHx+dsTExOorq7OaPenP/0Ju3fvRjKZxKpVq3S7JRsxMIgoH9rB0djYiNHRUYyNjWFmZgZ9fX2IRqNpbf7xj39g27ZtePbZZ3HHHXfodlkQEWWkXyIir9G+VFVeXo69e/eipaUFs7Oz2LlzJxoaGrB//34AQEdHB77zne/g9ddfx8MPPzz/mOHhYd2uiYjIAO3gAIBIJIJIJJJ2X0dHx/yfn376aTz99NN2dKWFl2TIFBFluALnE1Ecoy7BX47TPBFluAJv46SYHV8bd2FwEAAOXCJaOl8Eh4gyXAERkXf4IjiIyB1ElOEKaCl8Exy8FEOmiCjDFRDZyzfBQUsjogxX4E1cuOTG18g9GBw0jwOXiJbC88EhogxXQETkLZ4PDoAraSI3EVGGK6BcfBEcRKaIKMMVuAsXee7A4KAMIspwBd7CyZC8hsFBaTjJEVEung4OEWW4AiIi7/F0cABcQRO5kYgyXAEtxvPBQWSKiDJcgTtxsed8DA5akIgyXIE3cBIkL7IlOI4dO4ZQKIRgMIh4PJ6x37IsPPLIIwgGg9i0aRP+8Ic/2NEtFQknOyJajHZwzM7OorOzE0ePHsXIyAgOHTqEkZGRtDZHjx7F6OgoRkdH0dPTgy9/+cu63eYkooreBxGRH2kHx+nTpxEMBlFbW4vly5ejra0NyWQyrU0ymcTnP/95lJWVYcuWLbhy5QqmpqZ0u86JK2ci9xJRhiugbLSDY3JyEjU1NfO3A4EAJicn825D5CUiynAF7sZFnz4RVbRjl+sewLKsjPvKysrybjOnp6cHPT09AIBz585BRAquTeOhBOudE2/h94lysQCU8RzUYmmNf9J7/cLhcNZ92sERCAQwPj4+f3tiYgLV1dV5t5kTi8UQi8UAAKFQCIlEQrdEKsgQRBRSqZTpQlxJBHztNPE1LJyIAqD3+nV1dWXdp32pqrGxEaOjoxgbG8PMzAz6+voQjUbT2kSjURw8eBCWZeHkyZNYuXIlqqqqdLsmIqIsinm5T/sTR3l5Ofbu3YuWlhbMzs5i586daGhowP79+wEAHR0diEQi6O/vRzAYxHve8x4cOHBAu3Ai8j4Rxe87HEg7OAAgEokgEomk3dfR0TH/57KyMuzbt8+OrogcT0QZrsAbUqkhvpYOxV+O06JElOEK3ImrZPIyBgdlxcmPyH1EVNH7YHAQEXlMsRd9DA4icjQRZbgC+n8MDiIbiSjDFXgLL5c6E4ODchJRhitwF0525HUMDloUJ0Ei9xBRJemHwUFE5CGlWOwxOIjI8USU4QroZgwOIpuIKMMVeBMvlzoPg4OWREQZrsAdOMmRHzA4KCdOhkTOJ6JK1heDg4jII0q1yGNwEJEriCjDFdAcBgeRDUSU4Qq8jZdLnYXBQUsmogxX4Gyc3MgvGBy0JJwUiZxLRJW0P63guHz5Mpqbm1FXV4fm5mZMT09ntBkfH4eIoL6+Hg0NDXjyySd1uiQiogWUcnGnFRzxeBxNTU0YHR1FU1MT4vF4Rpvy8nJ873vfw1//+lecPHkS+/btw8jIiE63RORTIspwBQRoBkcymUR7ezsAoL29HUeOHMloU1VVhbvvvhsA8N73vhf19fWYnJzU6ZbIUUSU4Qr8gZdLHcTSsHLlyrTbFRUVi7YfGxuzampqrDfeeCNrm0QiYYXDYSscDlsAuDlqs97ZTNfhtI2vCV9r06+J/a9LOBzOOk+XI4etW7fi4sWLGffv2bMn10PTvPnmm9i+fTueeOIJ3HrrrVnbxWIxxGIxAEAoFEIikcirHyqmIYgopFIp04U4igj4mpQIX+tMIjf+a/fr0tXVlXVfzuA4fvx41n1r1qzB1NQUqqqqMDU1hcrKygXb/ec//8H27dvx4IMPYtu2bUsomYiIlqrUl/G0vuOIRqPo7e0FAPT29qK1tTWjjWVZ2LVrF+rr6/G1r31NpzsiIn6n5ABawdHd3Y2BgQHU1dVhYGAA3d3dAIALFy4gEokAAF566SU8++yzOHHiBDZv3ozNmzejv79fv3IiBxBRhivwF35B7gw5L1UtZtWqVRgcHMy4v7q6ej4cPvzhD8OyLJ1uyGFEFAfwTfhakCkiyki//OU45YWTJBExOIiIXMzEYo7BQVQgEWW4Av8SUYYr8DcGBxVERBmuwBl46a70+Jqbx+AgInIhEWWsbwYH5Y0rPiJ/Y3AQEbmUqUUcg4OoACLKcAUkogxX4F8MDiqYiDJcgVm8ZGcOX3uzGBxERC4jooz2z+CggnDFR2SWyTHI4CAi1xJRhivwJwYHUZ5ElOEKCOCnXpMYHKRFRBmuwAxOWuRnDA4qGCdPotITUYYrYHAQEbmO6UUbg4OIXE1EGa7Af7SC4/Lly2hubkZdXR2am5sxPT2dte3s7CzuuusufPKTn9TpksgoEWW4ArqZ6ZW3X2kFRzweR1NTE0ZHR9HU1IR4PJ617ZNPPon6+nqd7sihRJThCkqLkxWZIqIMV3CDVnAkk0m0t7cDANrb23HkyJEF201MTODnP/85du/erdMdORAnUaLScsSYszSsXLky7XZFRcWC7bZv324NDw9bqVTKuv/++xc9ZiKRsMLhsBUOhy0A3FyxWQ6ogc/Vv5vlo/eldM8zHA5nnafLkcPWrVtx8eLFjPv37NmT66EAgBdffBGVlZUIh8MYGhrK2T4WiyEWiwEAQqEQEonEkvohc0SAVCpluoyiE1EA/PFc3UTkxn/98L6Ucqx1dXVl3ZczOI4fP55135o1azA1NYWqqipMTU2hsrIyo81LL72EF154Af39/Xj77bdx9epVPPTQQ3juueeWWD65gYhyxkfoIvPDc3SbVGrIMdf+/ULrO45oNIre3l4AQG9vL1pbWzPafPe738XExATOnz+Pvr4+fPzjH2doEBHlSUQZruBdWsHR3d2NgYEB1NXVYWBgAN3d3QCACxcuIBKJ2FIgOR9X4USl4ZSxlvNS1WJWrVqFwcHBjPurq6vR39+fcb9SCkopnS6JiBYk4o/LpU7AX44TLYGIMlwBLYaBUVoMDrKNiDJcQXFxciJTRJThCtIxOMgWnFSJistJY4zBQUREeWFwEOUgogxXQEslogxX4A8MDrKViDJcQXE46TIBLcyr75GIMlxBJgYH2carA5eI0jE4iIgczmmLMgYH0SJElOEKKF8iynAF3sfgINuJKMMVkF85bWXuVQwOspUXB64XnxO5g4gyXMHCGBxERA7mxIULg4MoCxFluAIqlIgyXIG3MTioKESU4QqIqFgYHGQ7J360LpSXnotfeOU9E1GGK8iOwUFE5FBODUGt4Lh8+TKam5tRV1eH5uZmTE9PL9juypUr2LFjBz7wgQ+gvr4eL7/8sk63REUnogxXQLpElOEKvEsrOOLxOJqamjA6OoqmpibE4/EF233lK1/Bfffdh1deeQVnz55FfX29TrdERIty6krdK7SCI5lMor29HQDQ3t6OI0eOZLS5evUqfv3rX2PXrl0AgOXLl6OiokKnW3IJEWW4Aj2cfIgWphUcr732GqqqqgAAVVVV+Oc//5nR5u9//ztuv/12fPGLX8Rdd92F3bt349///rdOt+QCnHSJCieiDFeQg5VDU1OT1dDQkLEdOXLEWrlyZVrbioqKjMefOXPGWrZsmXXy5EnLsizrkUcesb71rW9l7S+RSFjhcNgKh8MWAG6u3iwH1FBo3W6tnZs33kfzdYfD4azzdDlyOH78eNZ9a9aswdTUFKqqqjA1NYXKysqMNoFAAIFAAPfccw8AYMeOHVm/CwGAWCyGWCwGAAiFQkgkErlKJIcSAVKplOky8iZy479urJ1uNgQR5cr30Qljp6urK+s+rUtV0WgUvb29AIDe3l60trZmtFm7di1qamrw6quvAgAGBwexYcMGnW7JRUSU4QoKw0ttZIqIMlxBblrB0d3djYGBAdTV1WFgYADd3d0AgAsXLiASicy3e+qpp/Dggw9i06ZN+OMf/4hvfvObelWTK3DyJSqM08dOzktVi1m1ahUGBwcz7q+urkZ/f//87c2bN2N4eFinK6KSEFGGKyC7iSjHT8Ruw1+OE5FnMTCKg8FBRSeiDFeQH042ZIqIMlzB0jA4qKg4CZMTiCjDFSydG8YMg4PoHSLKcAVE7sDgoJIQUYYrIL9ywwoecNcYYXAQ3cQtkwx5k1vOPwYHFZ1bBgN5m4gyXIF3MDiIwEnF67h4sReDg0pGRBmugMiZRJThCvLD4KCScMOKzw01kne56fxjcBCRb4gowxV4A4ODSkpEGa4gk4gyXAGVglNX9CLKcAX5Y3BQyTh14ALOro28z23nH4ODiIjywuCgkhNRhit4l4gyXAGVmogyXIH7MTiopJz4kdyJNVFxOO29FlGGKygMg4OIyCCnhdlSaAXH5cuX0dzcjLq6OjQ3N2N6enrBdt///vfR0NCAjRs34rOf/SzefvttnW7JA0SU4QqcUQOZIaIMV+BuWsERj8fR1NSE0dFRNDU1IR6PZ7SZnJzED37wAwwPD+PPf/4zZmdn0dfXp9MtuZyTVlhOqoVKwynvuYgyXEHhtIIjmUyivb0dANDe3o4jR44s2O769et46623cP36dVy7dg3V1dU63RJpE1GGKyByTojlzdKwcuXKtNsVFRULtnviiSesFStWWKtXr7Y+97nPLXrMRCJhhcNhKxwOWwC4eXaz3tn82j83s5sT3n/T/S++hcPhrPN0OXLYunUrLl68mHH/nj17cj0UADA9PY1kMomxsTFUVFTgM5/5DJ577jk89NBDC7aPxWKIxWIAgFAohEQisaR+yG2GIKKQSqWM9C4yt9oz0z+ZZvb8A+bOQeeef11dXVn35QyO48ePZ923Zs0aTE1NoaqqClNTU6isrFzw8evXr8ftt98OANi2bRt+97vfZQ0OomITUYYrIKcQUUYuF4mokvdpJ63vOKLRKHp7ewEAvb29aG1tzWizbt06nDx5EteuXYNlWRgcHER9fb1Ot+QhIspIv669tky2MX0OmO5fh1ZwdHd3Y2BgAHV1dRgYGEB3dzcA4MKFC4hEIgCAe+65Bzt27MDdd9+NO++8E//973/nL0UREfmNiDJcgb6cl6oWs2rVKgwODmbcX11djf7+/vnbjz32GB577DGdrsiDUqmhkg+iUvdHzidS+stVbv60AfCX4+RDbh+0ZJ9SnwsiqqT9FQuDg4wTUYYrIL8TUSXrywsLFwYHGVXKQSSiStYXuYcXJvJSY3CQI4iokvTDSYJMEVGGK7APg4OM42ROTiCiit6HV851Bgc5hohy5bHJ/Yo9oYuooh6/1Bgc5AilWIl5ZbVHxSOiinZsL51/DA5yFBHlimOS9xRrYhdRRTmuSQwOcoxirsi8tNoj9/Ha+cfgIMcRUY48FvmDiHLksZyEwUGOMrcyE1Hax5o7htdWe1Q8xThXvHj+MTjIcewcaF4ctFR8IsoRx3AqBgc5logy8ljyNzs/9Xp14cLgIEfSGXAiSvsY5G+64VHo49yCwUGOJqIKas/QIF264eHlc5DBQY5V6MDz8oCl0so3PESU5z9tAAwOcgERZWs7onwsNTzm9qdSQ55fvGgFx+HDh9HQ0IBbbrkFw8PDWdsdO3YMoVAIwWAQ8Xhcp0vymZsH7dy2kLn7vT5gyYzFwkNE+e780/qnYzdu3Iif/exn+NKXvpS1zezsLDo7OzEwMIBAIIDGxkZEo1Fs2LBBp2vykZsHo0j28PDLoCUz5v6pYxGV8c8e++3c0wqO+vr6nG1Onz6NYDCI2tpaAEBbWxuSySSDgwqy0AAVUSWugvzq5vCYu+1HWsGxFJOTk6ipqZm/HQgEcOrUqazte3p60NPTAwA4d+4cRKTYJZJH8FShUvPyORcOh7PuyxkcW7duxcWLFzPu37NnD1pbW3N2bllWxn1lZWVZ28diMcRiMQBAKBRCIpHI2QcREdmrq6sr676cwXH8+HGtzgOBAMbHx+dvT0xMoLq6WuuYRERkTtH/Om5jYyNGR0cxNjaGmZkZ9PX1IRqNFrtbIiIqEq3geP755xEIBPDyyy/j/vvvR0tLCwDgwoULiEQiAIDy8nLs3bsXLS0tqK+vxwMPPICGhgb9yomIyIgya6EvIRyC33EQEZnR1dWV9fd5/OU4ERHlhcFBRER5YXAQEVFeGBxERJQXBgcREeWFwUFERHlhcBARUV4c/TuO1atX4/3vf7/pMoiIfOf8+fO4dOnSgvscHRxEROQ8vFRFRER5YXAQEVFeGBxERJQXBgcREeWFwUFERHn5H4t3BvyLmPclAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 360x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"import matplotlib\n",
"\n",
"#matplotlib.use(\"Agg\")\n",
"import matplotlib.pyplot as plt\n",
"\n",
"matplotlib.rc(\"grid\", color=\"black\", linestyle=\"-\", linewidth=1)\n",
"\n",
"fig = plt.figure(figsize=(5, 4), dpi=72)\n",
"axes = fig.add_axes((0.01, 0.01, 0.98, 0.98), facecolor=\".75\")\n",
"X = np.linspace(0, 2, 40)\n",
"Y = np.sin(2 * np.pi * X)\n",
"plt.plot(X, Y, lw=0.05, c=\"b\", antialiased=False)\n",
"\n",
"plt.xticks([])\n",
"plt.yticks(np.arange(-1.0, 1.0, 0.2))\n",
"plt.grid()\n",
"ax = plt.gca()\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 4
}