Simplification for OW-LQN: functions owlqn_xnorm1, owlqn_gnorm, owlqn_direction were added.
git-svn-id: file:///home/svnrepos/software/liblbfgs/trunk@18 ecf4c44f-38d1-4fa4-9757-a0b4dd0349fc
This commit is contained in:
parent
83b5fd9801
commit
85e940b2ca
163
lib/lbfgs.c
163
lib/lbfgs.c
@ -169,7 +169,22 @@ static int update_trial_interval(
|
||||
int *brackt
|
||||
);
|
||||
|
||||
static lbfgsfloatval_t orthantwise_gnorm(
|
||||
static lbfgsfloatval_t owlqn_xnorm1(
|
||||
const lbfgsfloatval_t* x,
|
||||
const int start,
|
||||
const int n
|
||||
);
|
||||
|
||||
static lbfgsfloatval_t owlqn_gnorm(
|
||||
const lbfgsfloatval_t* x,
|
||||
const lbfgsfloatval_t* g,
|
||||
const lbfgsfloatval_t c,
|
||||
const int start,
|
||||
const int n
|
||||
);
|
||||
|
||||
static void owlqn_direction(
|
||||
lbfgsfloatval_t* d,
|
||||
const lbfgsfloatval_t* x,
|
||||
const lbfgsfloatval_t* g,
|
||||
const lbfgsfloatval_t c,
|
||||
@ -324,53 +339,29 @@ int lbfgs(
|
||||
/* Evaluate the function value and its gradient. */
|
||||
fx = cd.proc_evaluate(cd.instance, x, g, cd.n, 0);
|
||||
if (0. < param->orthantwise_c) {
|
||||
/* Compute L1-regularization factor and add it to the object value. */
|
||||
norm = 0.;
|
||||
for (i = param->orthantwise_start;i < n;++i) {
|
||||
norm += fabs(x[i]);
|
||||
}
|
||||
/* Compute the L1 norm of the variable and add it to the object value. */
|
||||
norm = owlqn_xnorm1(x, param->orthantwise_start, n);
|
||||
fx += norm * param->orthantwise_c;
|
||||
}
|
||||
|
||||
/* We assume the initial hessian matrix H_0 as the identity matrix. */
|
||||
/*
|
||||
Compute the direction;
|
||||
we assume the initial hessian matrix H_0 as the identity matrix.
|
||||
*/
|
||||
if (param->orthantwise_c == 0.) {
|
||||
vecncpy(d, g, n);
|
||||
} else {
|
||||
/* Compute the negative of gradients. */
|
||||
for (i = 0;i < param->orthantwise_start;++i) {
|
||||
d[i] = -g[i];
|
||||
}
|
||||
|
||||
/* Compute the negative of psuedo-gradients. */
|
||||
for (i = param->orthantwise_start;i < n;++i) {
|
||||
if (x[i] < 0.) {
|
||||
/* Differentiable. */
|
||||
d[i] = -g[i] + param->orthantwise_c;
|
||||
} else if (0. < x[i]) {
|
||||
/* Differentiable. */
|
||||
d[i] = -g[i] - param->orthantwise_c;
|
||||
} else {
|
||||
if (g[i] < -param->orthantwise_c) {
|
||||
/* Take the right partial derivative. */
|
||||
d[i] = -g[i] - param->orthantwise_c;
|
||||
} else if (param->orthantwise_c < g[i]) {
|
||||
/* Take the left partial derivative. */
|
||||
d[i] = -g[i] + param->orthantwise_c;
|
||||
} else {
|
||||
d[i] = 0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
owlqn_direction(d, x, g, param->orthantwise_c, param->orthantwise_start, n);
|
||||
}
|
||||
|
||||
/*
|
||||
Make sure that the initial variables are not a minimizer.
|
||||
*/
|
||||
vecnorm(&xnorm, x, n);
|
||||
if (param->orthantwise_c != 0.) {
|
||||
gnorm = orthantwise_gnorm(x, g, param->orthantwise_c, param->orthantwise_start, n);
|
||||
} else {
|
||||
if (param->orthantwise_c == 0.) {
|
||||
vecnorm(&gnorm, g, n);
|
||||
} else {
|
||||
gnorm = owlqn_gnorm(x, g, param->orthantwise_c, param->orthantwise_start, n);
|
||||
}
|
||||
if (xnorm < 1.0) xnorm = 1.0;
|
||||
if (gnorm / xnorm <= param->epsilon) {
|
||||
@ -400,7 +391,7 @@ int lbfgs(
|
||||
/* Compute x and g norms. */
|
||||
vecnorm(&xnorm, x, n);
|
||||
if (param->orthantwise_c != 0.) {
|
||||
gnorm = orthantwise_gnorm(x, g, param->orthantwise_c, param->orthantwise_start, n);
|
||||
gnorm = owlqn_gnorm(x, g, param->orthantwise_c, param->orthantwise_start, n);
|
||||
} else {
|
||||
vecnorm(&gnorm, g, n);
|
||||
}
|
||||
@ -461,36 +452,13 @@ int lbfgs(
|
||||
++k;
|
||||
end = (end + 1) % m;
|
||||
|
||||
/* Compute the steepest direction. */
|
||||
if (param->orthantwise_c == 0.) {
|
||||
/* Compute the negative of gradients. */
|
||||
vecncpy(d, g, n);
|
||||
} else {
|
||||
/* Compute the negative of gradients. */
|
||||
for (i = 0;i < param->orthantwise_start;++i) {
|
||||
d[i] = -g[i];
|
||||
}
|
||||
|
||||
/* Compute the negative of psuedo-gradients. */
|
||||
for (i = param->orthantwise_start;i < n;++i) {
|
||||
if (x[i] < 0.) {
|
||||
/* Differentiable. */
|
||||
d[i] = -g[i] + param->orthantwise_c;
|
||||
} else if (0. < x[i]) {
|
||||
/* Differentiable. */
|
||||
d[i] = -g[i] - param->orthantwise_c;
|
||||
} else {
|
||||
if (g[i] < -param->orthantwise_c) {
|
||||
/* Take the right partial derivative. */
|
||||
d[i] = -g[i] - param->orthantwise_c;
|
||||
} else if (param->orthantwise_c < g[i]) {
|
||||
/* Take the left partial derivative. */
|
||||
d[i] = -g[i] + param->orthantwise_c;
|
||||
} else {
|
||||
d[i] = 0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Store the steepest direction.*/
|
||||
owlqn_direction(d, x, g, param->orthantwise_c, param->orthantwise_start, n);
|
||||
/* Store the steepest direction to w.*/
|
||||
veccpy(w, d, n);
|
||||
}
|
||||
|
||||
@ -642,11 +610,8 @@ static int line_search_backtracking(
|
||||
/* Evaluate the function and gradient values. */
|
||||
*f = cd->proc_evaluate(cd->instance, x, g, cd->n, *stp);
|
||||
if (0. < param->orthantwise_c) {
|
||||
/* Compute L1-regularization factor and add it to the object value. */
|
||||
norm = 0.;
|
||||
for (i = param->orthantwise_start;i < n;++i) {
|
||||
norm += fabs(x[i]);
|
||||
}
|
||||
/* Compute the L1 norm of the variables and add it to the object value. */
|
||||
norm = owlqn_xnorm1(x, param->orthantwise_start, n);
|
||||
*f += norm * param->orthantwise_c;
|
||||
}
|
||||
|
||||
@ -812,11 +777,8 @@ static int line_search_morethuente(
|
||||
/* Evaluate the function and gradient values. */
|
||||
*f = cd->proc_evaluate(cd->instance, x, g, cd->n, *stp);
|
||||
if (0. < param->orthantwise_c) {
|
||||
/* Compute L1-regularization factor and add it to the object value. */
|
||||
norm = 0.;
|
||||
for (i = param->orthantwise_start;i < n;++i) {
|
||||
norm += fabs(x[i]);
|
||||
}
|
||||
/* Compute the L1 norm of the variables and add it to the object value. */
|
||||
norm = owlqn_xnorm1(x, param->orthantwise_start, n);
|
||||
*f += norm * param->orthantwise_c;
|
||||
|
||||
dg = 0.;
|
||||
@ -1235,7 +1197,24 @@ static int update_trial_interval(
|
||||
return 0;
|
||||
}
|
||||
|
||||
static lbfgsfloatval_t orthantwise_gnorm(
|
||||
|
||||
static lbfgsfloatval_t owlqn_xnorm1(
|
||||
const lbfgsfloatval_t* x,
|
||||
const int start,
|
||||
const int n
|
||||
)
|
||||
{
|
||||
int i;
|
||||
lbfgsfloatval_t norm = 0.;
|
||||
|
||||
for (i = start;i < n;++i) {
|
||||
norm += fabs(x[i]);
|
||||
}
|
||||
|
||||
return norm;
|
||||
}
|
||||
|
||||
static lbfgsfloatval_t owlqn_gnorm(
|
||||
const lbfgsfloatval_t* x,
|
||||
const lbfgsfloatval_t* g,
|
||||
const lbfgsfloatval_t c,
|
||||
@ -1263,3 +1242,41 @@ static lbfgsfloatval_t orthantwise_gnorm(
|
||||
|
||||
return sqrt(norm);
|
||||
}
|
||||
|
||||
static void owlqn_direction(
|
||||
lbfgsfloatval_t* d,
|
||||
const lbfgsfloatval_t* x,
|
||||
const lbfgsfloatval_t* g,
|
||||
const lbfgsfloatval_t c,
|
||||
const int start,
|
||||
const int n
|
||||
)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* Compute the negative of gradients. */
|
||||
for (i = 0;i < start;++i) {
|
||||
d[i] = -g[i];
|
||||
}
|
||||
|
||||
/* Compute the negative of psuedo-gradients. */
|
||||
for (i = start;i < n;++i) {
|
||||
if (x[i] < 0.) {
|
||||
/* Differentiable. */
|
||||
d[i] = -g[i] + c;
|
||||
} else if (0. < x[i]) {
|
||||
/* Differentiable. */
|
||||
d[i] = -g[i] - c;
|
||||
} else {
|
||||
if (g[i] < -c) {
|
||||
/* Take the right partial derivative. */
|
||||
d[i] = -g[i] - c;
|
||||
} else if (c < g[i]) {
|
||||
/* Take the left partial derivative. */
|
||||
d[i] = -g[i] + c;
|
||||
} else {
|
||||
d[i] = 0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -173,7 +173,7 @@
|
||||
UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
|
||||
>
|
||||
<File
|
||||
RelativePath=".\sample.c"
|
||||
RelativePath=".\sample2.c"
|
||||
>
|
||||
</File>
|
||||
</Filter>
|
||||
|
Loading…
Reference in New Issue
Block a user