update
This commit is contained in:
parent
24235f44ca
commit
f27bc17948
104
src/lib/lbfgs.c
104
src/lib/lbfgs.c
@ -148,6 +148,20 @@ static int line_search_backtracking(
|
||||
const lbfgs_parameter_t *param
|
||||
);
|
||||
|
||||
static int line_search_backtracking_quad(
|
||||
int n,
|
||||
lbfgsfloatval_t *x,
|
||||
lbfgsfloatval_t *f,
|
||||
lbfgsfloatval_t *g,
|
||||
lbfgsfloatval_t *s,
|
||||
lbfgsfloatval_t *stp,
|
||||
const lbfgsfloatval_t* xp,
|
||||
const lbfgsfloatval_t* gp,
|
||||
lbfgsfloatval_t *wa,
|
||||
callback_data_t *cd,
|
||||
const lbfgs_parameter_t *param
|
||||
);
|
||||
|
||||
static int line_search_backtracking_owlqn(
|
||||
int n,
|
||||
lbfgsfloatval_t *x,
|
||||
@ -370,6 +384,11 @@ int lbfgs(
|
||||
case LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE:
|
||||
linesearch = line_search_backtracking;
|
||||
break;
|
||||
case LBFGS_LINESEARCH_BACKTRACKING_ARMIJO_QUAD:
|
||||
//case LBFGS_LINESEARCH_BACKTRACKING_WOLFE_QUAD:
|
||||
//case LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE_QUAD:
|
||||
linesearch = line_search_backtracking_quad;
|
||||
break;
|
||||
default:
|
||||
return LBFGSERR_INVALID_LINESEARCH;
|
||||
}
|
||||
@ -945,6 +964,91 @@ static int line_search_backtracking(
|
||||
}
|
||||
}
|
||||
|
||||
static int line_search_backtracking_quad(
|
||||
int n,
|
||||
lbfgsfloatval_t *x,
|
||||
lbfgsfloatval_t *f,
|
||||
lbfgsfloatval_t *g,
|
||||
lbfgsfloatval_t *s,
|
||||
lbfgsfloatval_t *stp,
|
||||
const lbfgsfloatval_t* xp,
|
||||
const lbfgsfloatval_t* gp,
|
||||
lbfgsfloatval_t *wp,
|
||||
callback_data_t *cd,
|
||||
const lbfgs_parameter_t *param
|
||||
)
|
||||
{
|
||||
int count = 0;
|
||||
lbfgsfloatval_t dg, stp2;
|
||||
lbfgsfloatval_t finit, dginit = 0., dgtest;
|
||||
const lbfgsfloatval_t dec = 0.5;
|
||||
|
||||
/* Check the input parameters for errors. */
|
||||
if (*stp <= 0.) {
|
||||
return LBFGSERR_INVALIDPARAMETERS;
|
||||
}
|
||||
|
||||
/* Compute the initial gradient in the search direction. */
|
||||
vecdot(&dginit, g, s, n); //计算点积 g为梯度方向 s为下降方向
|
||||
|
||||
/* Make sure that s points to a descent direction. */
|
||||
if (0 < dginit) {
|
||||
return LBFGSERR_INCREASEGRADIENT;
|
||||
}
|
||||
|
||||
/* The initial value of the objective function. */
|
||||
finit = *f;
|
||||
dgtest = param->ftol * dginit; // ftol 大概为 function tolerance
|
||||
|
||||
for (;;) {
|
||||
veccpy(x, xp, n);
|
||||
vecadd(x, s, *stp, n); // vecadd x += (*stp)*s
|
||||
|
||||
/* Evaluate the function and gradient values. */
|
||||
// 这里我们发现的cd的用法,即传递函数指针
|
||||
*f = cd->proc_evaluate(cd->instance, x, g, cd->n, *stp);
|
||||
|
||||
++count;
|
||||
|
||||
// 充分下降条件
|
||||
if (*f > finit + *stp * dgtest) {
|
||||
stp2 = 0.5*dginit*(*stp)*(*stp)/(finit - (*f) + dginit*(*stp));
|
||||
if (stp2 < 0) {
|
||||
(*stp) *= dec;
|
||||
}
|
||||
else {
|
||||
(*stp) = stp2;
|
||||
}
|
||||
|
||||
} else {
|
||||
// 充分下降条件满足并搜索方法为backtracking,搜索条件为Armijo,则可以退出了。否则更新步长,继续搜索。
|
||||
/* The sufficient decrease condition (Armijo condition). */
|
||||
if (param->linesearch == LBFGS_LINESEARCH_BACKTRACKING_ARMIJO_QUAD) {
|
||||
/* Exit with the Armijo condition. */
|
||||
return count;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// 以下情况返回的步长不能保证满足搜索条件
|
||||
if (*stp < param->min_step) {
|
||||
/* The step is the minimum value. */
|
||||
// 退出 此时步长小于最小步长
|
||||
return LBFGSERR_MINIMUMSTEP;
|
||||
}
|
||||
if (*stp > param->max_step) {
|
||||
/* The step is the maximum value. */
|
||||
// 退出 此时步长大于最大步长
|
||||
return LBFGSERR_MAXIMUMSTEP;
|
||||
}
|
||||
if (param->max_linesearch <= count) {
|
||||
/* Maximum number of iteration. */
|
||||
// 退出 线性搜索次数超过了最大限制
|
||||
return LBFGSERR_MAXIMUMLINESEARCH;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 还是反向搜索 只是添加了L1模方向
|
||||
static int line_search_backtracking_owlqn(
|
||||
int n,
|
||||
|
@ -197,6 +197,14 @@ enum {
|
||||
* a is the step length.
|
||||
*/
|
||||
LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 3,
|
||||
|
||||
LBFGS_LINESEARCH_BACKTRACKING_ARMIJO_QUAD = 4,
|
||||
|
||||
//LBFGS_LINESEARCH_BACKTRACKING_QUAD = 5,
|
||||
|
||||
//LBFGS_LINESEARCH_BACKTRACKING_WOLFE_QUAD = 5,
|
||||
|
||||
//LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE_QUAD = 6,
|
||||
};
|
||||
|
||||
// L-BFGS参数类型。参数很多,简要说明如下:
|
||||
|
@ -39,10 +39,16 @@ public:
|
||||
Start the L-BFGS optimization; this will invoke the callback functions
|
||||
evaluate() and progress() when necessary.
|
||||
*/
|
||||
int ret = lbfgs(N, m_x, &fx, _evaluate, _progress, this, NULL, NULL);
|
||||
lbfgs_parameter_t self_para;
|
||||
lbfgs_parameter_init(&self_para);
|
||||
self_para.epsilon = 1e-7;
|
||||
//self_para.linesearch = LBFGS_LINESEARCH_BACKTRACKING_ARMIJO_QUAD;
|
||||
//self_para.ftol = 1e-3;
|
||||
|
||||
int ret = lbfgs(N, m_x, &fx, _evaluate, _progress, this, &self_para, NULL);
|
||||
|
||||
/* Report the result. */
|
||||
printf("L-BFGS optimization terminated with status code = %d\n", ret);
|
||||
printf("L-BFGS optimization terminated with status: %s\n", lbfgs_strerror(ret));
|
||||
printf(" fx = %f, x[0] = %f, x[1] = %f\n", fx, m_x[0], m_x[1]);
|
||||
|
||||
return ret;
|
||||
@ -111,7 +117,7 @@ protected:
|
||||
{
|
||||
printf("Iteration %d:\n", k);
|
||||
printf(" fx = %f, x[0] = %f, x[1] = %f\n", fx, x[0], x[1]);
|
||||
printf(" xnorm = %f, gnorm = %f, step = %f\n", xnorm, gnorm, step);
|
||||
printf(" xnorm = %f, gnorm = %f, step = %f, convergence = %e\n", xnorm, gnorm, step, gnorm/xnorm);
|
||||
printf("\n");
|
||||
return 0;
|
||||
}
|
||||
|
@ -186,6 +186,8 @@ int TEST_FUNC::Routine()
|
||||
lbfgs_parameter_t self_para;
|
||||
lbfgs_parameter_init(&self_para);
|
||||
self_para.epsilon = 1e-7;
|
||||
self_para.linesearch = LBFGS_LINESEARCH_BACKTRACKING_ARMIJO_QUAD;
|
||||
self_para.ftol = 1e-3;
|
||||
|
||||
int ret = lbfgs(N, x, &fx, _Func, _Progress, this, &self_para, _Precondition);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user