complete tin

This commit is contained in:
张壹 2021-09-22 16:36:30 +08:00
parent f705e487c7
commit 85f2c3bf1d
3 changed files with 789 additions and 789 deletions

View File

@ -1,4 +1,4 @@
#include "tin_backup.h"
#include "tin.h"
#include "iostream"
#include "fstream"
#include "iomanip"

781
tin.h
View File

@ -13,8 +13,6 @@
#include "vector"
#include "algorithm"
#include "iostream"
#define ZERO 1e-5
// Start vertex definition
@ -51,56 +49,77 @@ bool is_collinear(vertex2dc *a_ptr, vertex2dc *b_ptr, vertex2dc *c_ptr) // Test
}
return false;
}
void circumcircle(vertex2dc *v0, vertex2dc *v1, vertex2dc *v2, double &cx, double &cy, double &cr) // calculate the circumcircle from three points
{
double s = 0.5 / ((v1->x - v0->x) * (v2->y - v0->y) - (v1->y - v0->y) * (v2->x - v0->x));
double m = v1->x*v1->x - v0->x*v0->x + v1->y*v1->y - v0->y*v0->y;
double u = v2->x*v2->x - v0->x*v0->x + v2->y*v2->y - v0->y*v0->y;
cx = ((v2->y - v0->y)*m + (v0->y - v1->y)*u)*s;
cy = ((v0->x - v2->x)*m + (v1->x - v0->x)*u)*s;
cr = (v0->x - cx)*(v0->x - cx) + (v0->y - cy)*(v0->y - cy); // not need to calculate the squared root here
return;
}
// End vertex definition
// Start edge definition
struct edge
{
vertex2dc *vert[2]; // vertex of the edge
// Start DEM definition
struct triangle;
edge() {vert[0] = vert[1] = nullptr;}
edge(vertex2dc *v0ptr, vertex2dc *v1ptr) {set(v0ptr, v1ptr);}
void set(vertex2dc *v0ptr, vertex2dc *v1ptr)
struct dem_point
{
double x, y; // position of the DEM location
double elev; // elevation at the DEM location
double err; // error of the TIN with respect to the elevation
triangle *host;
dem_point() : x(NAN), y(NAN), elev(NAN), err(0.0), host(nullptr) {}
dem_point(double inx, double iny, double inelev) {set(inx, iny, inelev);}
void set(double inx, double iny, double inelev)
{
vert[0] = v0ptr; vert[1] = v1ptr;
x = inx; y = iny; elev = inelev; err = 0.0; host = nullptr;
return;
}
};
bool operator ==(const edge &a, const edge &b) // overload the == operator for edge type
bool compare_dem_point(dem_point *a, dem_point *b) // determination function for std::sort
{
if((a.vert[0] == b.vert[0] && a.vert[1] == b.vert[1]) ||
(a.vert[0] == b.vert[1] && a.vert[1] == b.vert[0]))
{
return true;
}
if (a->err > b->err) return true;
return false;
}
// End edge definition
// Start triangle definition
struct dem_point;
// End DEM definition
/* Start triangle definition
* v2
* /\
* / \
* n2 / \ n1
* / \
* /------------\
* v0 n0 v1
*/
struct triangle
{
int id;
vertex2dc *vert[3]; // vertex of the triangle
triangle *neigh[3]; // neighbors of the triangle
double cx, cy; // center of the triangle's circumcircle
double cr; // radius of the circumcircle
std::vector<dem_point*> circum_dem;
std::vector<dem_point*> hosted_dem;
triangle() {vert[0] = vert[1] = vert[2] = nullptr;}
triangle() {vert[0] = vert[1] = vert[2] = nullptr; neigh[0] = neigh[1] = neigh[2] = nullptr;}
triangle(vertex2dc *v0ptr, vertex2dc *v1ptr, vertex2dc *v2ptr) {set(v0ptr, v1ptr, v2ptr);}
void set(vertex2dc *v0ptr, vertex2dc *v1ptr, vertex2dc *v2ptr)
{
vert[0] = v0ptr; vert[1] = v1ptr; vert[2] = v2ptr;
neigh[0] = neigh[1] = neigh[2] = nullptr;
circumcircle(vert[0], vert[1], vert[2], cx, cy, cr);
return;
}
double s = 0.5 / ((vert[1]->x - vert[0]->x) * (vert[2]->y - vert[0]->y) - (vert[1]->y - vert[0]->y) * (vert[2]->x - vert[0]->x));
double m = vert[1]->x * vert[1]->x - vert[0]->x * vert[0]->x + vert[1]->y * vert[1]->y - vert[0]->y * vert[0]->y;
double u = vert[2]->x * vert[2]->x - vert[0]->x * vert[0]->x + vert[2]->y * vert[2]->y - vert[0]->y * vert[0]->y;
cx = ((vert[2]->y - vert[0]->y) * m + (vert[0]->y - vert[1]->y) * u) * s;
cy = ((vert[0]->x - vert[2]->x) * m + (vert[1]->x - vert[0]->x) * u) * s;
cr = (vert[0]->x - cx) * (vert[0]->x - cx) + (vert[0]->y - cy) * (vert[0]->y - cy); // not need to sqrt() here
void set_neighbor(triangle *n0ptr, triangle *n1ptr, triangle *n2ptr)
{
neigh[0] = n0ptr; neigh[1] = n1ptr; neigh[2] = n2ptr;
return;
}
@ -130,32 +149,288 @@ struct triangle
return (a1*vert[0]->elev + a2*vert[1]->elev + a3*vert[2]->elev)/(a1 + a2 + a3);
}
};
// End triangle definition
// Start DEM definition
struct dem_point
/**
* @brief Flip neighboring triangles and their neighbors
*
* original
*
* /\
* / \
* / \
* / t \
* t_id-------\ t_id (0, 1 or 2)
* \--------/
* \ /
* \ n /
* \ /
* \/
* n_id (0, 1 or 2)
*
* flipped
*
* /|\
* / | \
* / | \
* / | \
* t_id | \ t_id (0, 1 or 2)
* \ t | n /
* \ | /
* \ | /
* \ | /
* \|/
* n_id (0, 1 or 2)
*
* @param t target triangle
* @param n neighboring triangle
* @param t_vid reference index of the target triangle
* @param n_vid reference index of the neighboring triangle
*/
void flip_neighboring_triangles(triangle *t, triangle *n, int t_id, int n_id)
{
double x, y; // position of the DEM location
double elev; // elevation at the DEM location
double err; // error of the TIN with respect to the elevation
triangle *host; // host triangle of the DEM location
std::vector<triangle*> circum_host; // triangles which circumcircles include the location
t->vert[(t_id+1)%3] = n->vert[n_id]; // flip t
circumcircle(t->vert[0], t->vert[1], t->vert[2], t->cx, t->cy, t->cr); // update circumcircle
dem_point() : x(NAN), y(NAN), elev(NAN), host(nullptr) {}
dem_point(double inx, double iny, double inelev) {set(inx, iny, inelev);}
void set(double inx, double iny, double inelev)
n->vert[(n_id+2)%3] = t->vert[(t_id+2)%3]; // flip n
circumcircle(n->vert[0], n->vert[1], n->vert[2], n->cx, n->cy, n->cr); // update circumcircle
// set side neighbors
t->neigh[t_id] = n->neigh[(n_id+2)%3];
n->neigh[(n_id+1)%3] = t->neigh[(t_id+1)%3];
// set opposite neighbors
t->neigh[(t_id+1)%3] = n;
n->neigh[(n_id+2)%3] = t;
// set oppsite neighbors
if (t->neigh[t_id] != nullptr)
{
x = inx; y = iny; elev = inelev; host = nullptr;
return;
for (int i = 0; i < 3; i++)
{
if (t->neigh[t_id]->neigh[i] == n)
{
t->neigh[t_id]->neigh[i] = t;
break;
}
}
}
};
bool compare_dem_point(dem_point *a, dem_point *b)
{
if (a->err > b->err) return true;
return false;
if (n->neigh[(n_id+1)%3] != nullptr)
{
for (int i = 0; i < 3; i++)
{
if (n->neigh[(n_id+1)%3]->neigh[i] == t)
{
n->neigh[(n_id+1)%3]->neigh[i] = n;
break;
}
}
}
// move hosted DEM points
dem_point *tmp_dem;
std::vector<dem_point*>::iterator d_iter;
for (d_iter = t->hosted_dem.begin(); d_iter != t->hosted_dem.end(); )
{
tmp_dem = *d_iter;
if (n->bound_location(tmp_dem->x, tmp_dem->y))
{
tmp_dem->host = n;
n->hosted_dem.push_back(tmp_dem);
d_iter = t->hosted_dem.erase(d_iter);
}
else d_iter++;
}
for (d_iter = n->hosted_dem.begin(); d_iter != n->hosted_dem.end(); )
{
tmp_dem = *d_iter;
if (t->bound_location(tmp_dem->x, tmp_dem->y))
{
tmp_dem->host = t;
t->hosted_dem.push_back(tmp_dem);
d_iter = n->hosted_dem.erase(d_iter);
}
else d_iter++;
}
// update errors for hosted DEM data
for (int i = 0; i < n->hosted_dem.size(); i++)
{
tmp_dem = n->hosted_dem[i];
tmp_dem->err = fabs(n->interpolate(tmp_dem->x, tmp_dem->y) - tmp_dem->elev);
}
for (int i = 0; i < t->hosted_dem.size(); i++)
{
tmp_dem = t->hosted_dem[i];
tmp_dem->err = fabs(t->interpolate(tmp_dem->x, tmp_dem->y) - tmp_dem->elev);
}
// Sort maximal errors for triangles t and n
std::sort(t->hosted_dem.begin(), t->hosted_dem.end(), compare_dem_point);
std::sort(n->hosted_dem.begin(), n->hosted_dem.end(), compare_dem_point);
return;
}
// End DEM definition
/**
* @brief Make sure that the input triangle meets the empty circumcircle condition
*
* @param t Input triangle
*/
void make_delaunay(triangle *t)
{
double dist;
vertex2dc *n_vert;
triangle *n_tri;
dem_point *tmp_dem;
for (int n = 0; n < 3; n++)
{
if (t->neigh[n] != nullptr) // must has neighbor on this side
{
n_tri = t->neigh[n];
for (int v = 0; v < 3; v++)
{
n_vert = n_tri->vert[v];
if (n_vert != t->vert[n] && n_vert != t->vert[(n+1)%3]) // find the opposite vertex
{
dist = (t->cx - n_vert->x) * (t->cx - n_vert->x) +
(t->cy - n_vert->y) * (t->cy - n_vert->y);
if ((dist - t->cr) < -1.0*ZERO) // A very restrict condition. The testing point must be really inside the circumcircle
{
flip_neighboring_triangles(t, n_tri, n, v);
// Make sure the triangles also meet the empty circumcircle condition after flipping
make_delaunay(t);
make_delaunay(n_tri);
return; // Neighborhood changed. The current loop is not valid any more.
}
break; // no need to search more
}
}
}
}
return;
}
triangle *split_triangle(vertex2dc *v, triangle *t, triangle *new_t[4])
{
vertex2dc *tmp_vert;
triangle *tmp_tri;
new_t[0] = new_t[1] = new_t[2] = new_t[3] = nullptr;
// Check for collinear
for (int i = 0; i < 3; i++)
{
if (is_collinear(t->vert[i], t->vert[(i+1)%3], v)) // the new vertex is on edge
{
if (t->neigh[i] == nullptr) // no neighboring triangle. create two new triangles
{
tmp_tri = new triangle(t->vert[i], v, t->vert[(i+2)%3]); new_t[0] = tmp_tri;
tmp_tri = new triangle(t->vert[(i+2)%3], v, t->vert[(i+1)%3]); new_t[1] = tmp_tri;
new_t[0]->set_neighbor(nullptr, new_t[1], t->neigh[(i+2)%3]);
new_t[1]->set_neighbor(new_t[0], nullptr, t->neigh[(i+1)%3]);
for (int n = 0; n < 2; n++)
{
if (new_t[n]->neigh[2] != nullptr)
{
for (int k = 0; k < 3; ++k) // replace neighbor for the oppositing triangle
{
if (new_t[n]->neigh[2]->neigh[k] == t)
{
new_t[n]->neigh[2]->neigh[k] = new_t[n];
break;
}
}
}
}
return nullptr;
}
// has a neighboring triangle. create four new triangles
for (int k = 0; k < 3; k++)
{
tmp_vert = t->neigh[i]->vert[k];
if (tmp_vert != t->vert[i] && tmp_vert != t->vert[(i+1)%3])
{
tmp_tri = new triangle(t->vert[i], v, t->vert[(i+2)%3]); new_t[0] = tmp_tri;
tmp_tri = new triangle(t->vert[(i+2)%3], v, t->vert[(i+1)%3]); new_t[1] = tmp_tri;
tmp_tri = new triangle(tmp_vert, v, t->vert[i]); new_t[2] = tmp_tri;
tmp_tri = new triangle(t->vert[(i+1)%3], v, tmp_vert); new_t[3] = tmp_tri;
new_t[0]->set_neighbor(new_t[2], new_t[1], t->neigh[(i+2)%3]);
new_t[1]->set_neighbor(new_t[0], new_t[3], t->neigh[(i+1)%3]);
new_t[2]->set_neighbor(new_t[3], new_t[0], t->neigh[i]->neigh[(k+2)%3]);
new_t[3]->set_neighbor(new_t[1], new_t[2], t->neigh[i]->neigh[k]);
for (int n = 0; n < 2; n++)
{
if (new_t[n]->neigh[2] != nullptr)
{
for (int k = 0; k < 3; ++k) // replace neighbor for the oppositing triangle
{
if (new_t[n]->neigh[2]->neigh[k] == t)
{
new_t[n]->neigh[2]->neigh[k] = new_t[n];
break;
}
}
}
}
for (int n = 2; n < 4; n++)
{
if (new_t[n]->neigh[2] != nullptr)
{
for (int k = 0; k < 3; ++k) // replace neighbor for the oppositing triangle
{
if (new_t[n]->neigh[2]->neigh[k] == t->neigh[i])
{
new_t[n]->neigh[2]->neigh[k] = new_t[n];
break;
}
}
}
}
break;
}
}
return t->neigh[i]; // Return the neighboring tiangle to be deleted
}
}
// The new vertex is inside the triangle. create three new triangles
for (int n = 0; n < 3; ++n)
{
tmp_tri = new triangle(t->vert[n], t->vert[(n+1)%3], v);
new_t[n] = tmp_tri;
}
// sort neighbors for new triangles
for (int n = 0; n < 3; ++n)
{
if (t->neigh[n] == nullptr)
{
new_t[n]->set_neighbor(nullptr, new_t[(n+1)%3], new_t[(n+2)%3]);
}
else
{
new_t[n]->set_neighbor(t->neigh[n], new_t[(n+1)%3], new_t[(n+2)%3]);
for (int k = 0; k < 3; ++k) // replace neighbor for the oppositing triangle
{
if (t->neigh[n]->neigh[k] == t)
{
t->neigh[n]->neigh[k] = new_t[n];
break;
}
}
}
}
return nullptr;
}
// End triangle definition
/**
* @brief Generate the TIN from the DEM grid
@ -189,274 +464,252 @@ void dem2tin(const std::vector<double> &dem, double xmin, double xmax, double ym
if (dem.size() != xnum*ynum) return;
// Prepare the DEM points
dem_point *tmp_dem = nullptr;;
std::vector<dem_point*> dem_grid(xnum*ynum);
dem_point *tmp_dem = nullptr;
std::vector<dem_point*> dem_tri;
std::vector<dem_point*>::iterator d_iter;
for (int i = 0; i < ynum; ++i)
{
for (int j = 0; j < xnum; ++j)
{
dem_grid[j + i*xnum] = new dem_point(xmin + dx*j, ymin + dy*i, dem[j + i*xnum]);
}
}
vertex2dc *tmp_vert = nullptr;
tmp_vert = new vertex2dc(xmin, ymin, dem_grid[0]->elev, out_verts.size()); // lower left corner
tmp_vert = new vertex2dc(xmin, ymin, dem[0], out_verts.size()); // lower left corner
out_verts.push_back(tmp_vert);
d_iter = dem_grid.begin();
tmp_dem = *d_iter; delete tmp_dem;
dem_grid.erase(d_iter);
tmp_vert = new vertex2dc(xmax, ymin, dem_grid[xnum-2]->elev, out_verts.size()); // lower right corner. Note the first location is already erased
tmp_vert = new vertex2dc(xmax, ymin, dem[xnum-1], out_verts.size()); // lower right corner
out_verts.push_back(tmp_vert);
d_iter = dem_grid.begin() + (xnum - 2);
tmp_dem = *d_iter; delete tmp_dem;
dem_grid.erase(d_iter);
tmp_vert = new vertex2dc(xmax, ymax, dem_grid[xnum*ynum-3]->elev, out_verts.size()); // upper right corner. Note the first two locations are already erased
tmp_vert = new vertex2dc(xmax, ymax, dem[xnum*ynum-1], out_verts.size()); // upper right corner
out_verts.push_back(tmp_vert);
d_iter = dem_grid.begin() + (xnum*ynum - 3);
tmp_dem = *d_iter; delete tmp_dem;
dem_grid.erase(d_iter);
tmp_vert = new vertex2dc(xmin, ymax, dem_grid[xnum*(ynum-1) - 2]->elev, out_verts.size()); // upper left corner. Note the first two locations are already erased
tmp_vert = new vertex2dc(xmin, ymax, dem[xnum*(ynum-1)], out_verts.size()); // upper left corner
out_verts.push_back(tmp_vert);
d_iter = dem_grid.begin() + (xnum*(ynum-1) - 2);
tmp_dem = *d_iter; delete tmp_dem;
dem_grid.erase(d_iter);
triangle *tmp_tri = nullptr;
std::vector<triangle*> cnst_tri, new_tri;
triangle *old_tri = nullptr, *tmp_tri = nullptr;
triangle *cnst_tri[4];
std::vector<triangle*>::iterator t_iter;
if (!is_collinear(out_verts[0], out_verts[1], out_verts[2])) // Do not create triangle if the vertexes are collinear
{
tmp_tri = new triangle(out_verts[0], out_verts[1], out_verts[2]); // order the vertex anti-clock wise
out_tris.push_back(tmp_tri);
out_tris.push_back(tmp_tri); tmp_tri = nullptr;
}
if (!is_collinear(out_verts[0], out_verts[2], out_verts[3]))
{
tmp_tri = new triangle(out_verts[0], out_verts[2], out_verts[3]); // order the vertex anti-clock wise
out_tris.push_back(tmp_tri);
out_tris.push_back(tmp_tri); tmp_tri = nullptr;
}
if (out_tris.size() != 2) return;
out_tris[0]->set_neighbor(nullptr, nullptr, out_tris[1]);
out_tris[1]->set_neighbor(out_tris[0], nullptr, nullptr);
// Find host triangle for all DEM locations
for (int i = 0; i < dem_grid.size(); ++i)
int tmp_id;
for (int i = 0; i < ynum; ++i)
{
for (int t = 0; t < out_tris.size(); ++t)
for (int j = 0; j < xnum; ++j)
{
if (out_tris[t]->bound_location(dem_grid[i]->x, dem_grid[i]->y))
tmp_id = j + i*xnum;
if (tmp_id != 0 && tmp_id != (xnum-1) && tmp_id != (xnum*ynum-1) && tmp_id != (xnum*(ynum-1))) // the four corners are already used
{
dem_grid[i]->host = out_tris[t];
break; // already found, no need to search more
}
}
}
// Find circum_host triangles for all DEM locations
double dist;
for (int i = 0; i < dem_grid.size(); ++i)
{
for (int t = 0; t < out_tris.size(); ++t)
{
dist = (out_tris[t]->cx - dem_grid[i]->x) * (out_tris[t]->cx - dem_grid[i]->x)
+ (out_tris[t]->cy - dem_grid[i]->y) * (out_tris[t]->cy - dem_grid[i]->y);
if ((dist - out_tris[t]->cr) <= ZERO) // Points on the circumcircle are also included
{
dem_grid[i]->circum_host.push_back(out_tris[t]);
out_tris[t]->circum_dem.push_back(dem_grid[i]);
// no beak here. There might be more than one triangle's circumcircle includes the DEM location
}
}
}
// loop all DEM data to find the location with maximal error
for (int i = 0; i < dem_grid.size(); ++i)
{
dem_grid[i]->err = fabs(dem_grid[i]->host->interpolate(dem_grid[i]->x, dem_grid[i]->y) - dem_grid[i]->elev);
}
// Sort dem_grid in the desceding order with respect to the error
std::sort(dem_grid.begin(), dem_grid.end(), compare_dem_point);
bool removed;
edge tmp_edge;
std::vector<edge> cnst_edge;
std::vector<edge>::iterator e_iter;
while (dem_grid[0]->err >= maxi_err) // quit til the threshold is meet
{
if (err_records != nullptr)
{
err_records->push_back(dem_grid[0]->err);
}
// create a new vertex
tmp_vert = new vertex2dc(dem_grid[0]->x, dem_grid[0]->y, dem_grid[0]->elev, out_verts.size());
out_verts.push_back(tmp_vert);
// Move triangles which circumcircles include the new vertex to the cnst_tri and remove it from out_tris
cnst_tri.clear();
for (int i = 0; i < dem_grid[0]->circum_host.size(); ++i)
{
cnst_tri.push_back(dem_grid[0]->circum_host[i]);
}
for (int c = 0; c < cnst_tri.size(); ++c)
{
for (t_iter = out_tris.begin(); t_iter != out_tris.end(); )
{
tmp_tri = *t_iter;
if (cnst_tri[c] == tmp_tri)
tmp_dem = new dem_point(xmin + dx*j, ymin + dy*i, dem[j + i*xnum]);
for (int t = 0; t < out_tris.size(); ++t)
{
t_iter = out_tris.erase(t_iter);
break; // no need to search more
}
else t_iter++;
}
}
// remove cnst_tri from its circumed DEM's circum triangle list
for (int c = 0; c < cnst_tri.size(); ++c)
{
for (int i = 0; i < cnst_tri[c]->circum_dem.size(); ++i)
{
tmp_dem = cnst_tri[c]->circum_dem[i];
for (t_iter = tmp_dem->circum_host.begin(); t_iter != tmp_dem->circum_host.end(); )
{
if (cnst_tri[c] == *t_iter)
if (out_tris[t]->bound_location(tmp_dem->x, tmp_dem->y))
{
t_iter = tmp_dem->circum_host.erase(t_iter);
break;
}
else t_iter++;
}
}
}
// remove dem_grid[0] from its circumed triangle's circum DEM list
for (int c = 0; c < cnst_tri.size(); ++c)
{
for (d_iter = cnst_tri[c]->circum_dem.begin(); d_iter != cnst_tri[c]->circum_dem.end(); )
{
if (dem_grid[0] == *d_iter)
{
d_iter = cnst_tri[c]->circum_dem.erase(d_iter);
break;
}
else d_iter++;
}
}
// clear host and circumcircle triangles for the used DEM location
d_iter = dem_grid.begin();
tmp_dem = *d_iter; tmp_dem->circum_host.clear(); delete tmp_dem;
dem_grid.erase(d_iter);
// loop to remove duplicate edges
cnst_edge.clear();
for (int c = 0; c < cnst_tri.size(); ++c)
{
for (int e = 0; e < 3; ++e)
{
tmp_edge.set(cnst_tri[c]->vert[e], cnst_tri[c]->vert[(e+1)%3]);
removed = false;
for (e_iter = cnst_edge.begin(); e_iter != cnst_edge.end(); )
{
if (tmp_edge == *e_iter) // duplicate edge, remove from cnst_edge
{
e_iter = cnst_edge.erase(e_iter);
removed = true;
break; // no need to search more
}
else e_iter++;
}
if (!removed) // not a duplicate edge, add to the cnst_edge
{
cnst_edge.push_back(tmp_edge);
}
}
}
// construct new triangles and add to out_tris
new_tri.clear();
for (int c = 0; c < cnst_edge.size(); ++c)
{
if (!is_collinear(cnst_edge[c].vert[0], cnst_edge[c].vert[1], tmp_vert)) // Do not create triangle if the vertexes are collinear
{
tmp_tri = new triangle(cnst_edge[c].vert[0], cnst_edge[c].vert[1], tmp_vert); // order the vertex anti-clock wise
out_tris.push_back(tmp_tri);
new_tri.push_back(tmp_tri);
}
}
// loop all DEM data to update host triangles
for (int c = 0; c < cnst_tri.size(); ++c)
{
for (int i = 0; i < cnst_tri[c]->circum_dem.size(); ++i)
{
tmp_dem = cnst_tri[c]->circum_dem[i];
for (int n = 0; n < new_tri.size(); ++n) // search in newly created triangles to find new host
{
if (new_tri[n]->bound_location(tmp_dem->x, tmp_dem->y))
{
tmp_dem->host = new_tri[n];
tmp_dem->err = fabs(new_tri[n]->interpolate(tmp_dem->x, tmp_dem->y) - tmp_dem->elev);
tmp_dem->host = out_tris[t];
tmp_dem->err = fabs(out_tris[t]->interpolate(tmp_dem->x, tmp_dem->y) - tmp_dem->elev);
out_tris[t]->hosted_dem.push_back(tmp_dem);
break; // already found, no need to search more
}
}
}
}
}
// Find circum_host triangles for all DEM locations
// cnst_tri's circum area doesn't over cover new_tri's circum area
for (int i = 0; i < dem_grid.size(); ++i)
// Sort hosted_dem in the desceding order with respect to the error. Add maximal zeros to dem_tri
for (int t = 0; t < out_tris.size(); ++t)
{
std::sort(out_tris[t]->hosted_dem.begin(), out_tris[t]->hosted_dem.end(), compare_dem_point);
dem_tri.push_back(out_tris[t]->hosted_dem[0]);
}
// Sort dem_tri
std::sort(dem_tri.begin(), dem_tri.end(), compare_dem_point);
while (dem_tri[0]->err >= maxi_err) // quit til the threshold is meet
{
if (err_records != nullptr)
{
for (int n = 0; n < new_tri.size(); ++n) // search in newly created triangles to find new circumcircle triangles
err_records->push_back(dem_tri[0]->err);
}
// find the triangle that includes dem_tri[0] and remove it from out_tris
for (t_iter = out_tris.begin(); t_iter != out_tris.end(); )
{
old_tri = *t_iter;
if (old_tri == dem_tri[0]->host)
{
dist = (new_tri[n]->cx - dem_grid[i]->x) * (new_tri[n]->cx - dem_grid[i]->x)
+ (new_tri[n]->cy - dem_grid[i]->y) * (new_tri[n]->cy - dem_grid[i]->y);
if ((dist - new_tri[n]->cr) <= ZERO) // Points on the circumcircle are also included
{
new_tri[n]->circum_dem.push_back(dem_grid[i]);
dem_grid[i]->circum_host.push_back(new_tri[n]);
// no beak here. There might be more than one triangle's circumcircle includes the DEM location
}
t_iter = out_tris.erase(t_iter);
break;
}
else t_iter++;
}
// remove dem_tri[0] from its host triangle's hosted DEM list
for (d_iter = old_tri->hosted_dem.begin(); d_iter != old_tri->hosted_dem.end(); )
{
if (dem_tri[0] == *d_iter)
{
d_iter = old_tri->hosted_dem.erase(d_iter);
break;
}
else d_iter++;
}
// create a new vertex
tmp_vert = new vertex2dc(dem_tri[0]->x, dem_tri[0]->y, dem_tri[0]->elev, out_verts.size());
out_verts.push_back(tmp_vert);
// Delete dem_tri[0]
tmp_dem = dem_tri[0]; delete tmp_dem;
// build new triangles
tmp_tri = split_triangle(tmp_vert, old_tri, cnst_tri);
for (int n = 0; n < 4; ++n)
{
if (cnst_tri[n] != nullptr)
{
out_tris.push_back(cnst_tri[n]);
}
}
// destroy memories used by cnst_edge
for (int c = 0; c < cnst_tri.size(); ++c)
if (tmp_tri != nullptr)
{
tmp_tri = cnst_tri[c];
tmp_tri->circum_dem.clear();
for (t_iter = out_tris.begin(); t_iter != out_tris.end(); )
{
if (tmp_tri == *t_iter)
{
t_iter = out_tris.erase(t_iter);
break;
}
else t_iter++;
}
// build hosted dem for the new triangles
for (int d = 0; d < old_tri->hosted_dem.size(); d++)
{
tmp_dem = old_tri->hosted_dem[d];
for (int n = 0; n < 4; n++)
{
if (cnst_tri[n] != nullptr && cnst_tri[n]->bound_location(tmp_dem->x, tmp_dem->y))
{
tmp_dem->host = cnst_tri[n];
tmp_dem->err = fabs(cnst_tri[n]->interpolate(tmp_dem->x, tmp_dem->y) - tmp_dem->elev);
cnst_tri[n]->hosted_dem.push_back(tmp_dem);
break;
}
}
}
for (int d = 0; d < tmp_tri->hosted_dem.size(); d++)
{
tmp_dem = tmp_tri->hosted_dem[d];
for (int n = 0; n < 4; n++)
{
if (cnst_tri[n] != nullptr && cnst_tri[n]->bound_location(tmp_dem->x, tmp_dem->y))
{
tmp_dem->host = cnst_tri[n];
tmp_dem->err = fabs(cnst_tri[n]->interpolate(tmp_dem->x, tmp_dem->y) - tmp_dem->elev);
cnst_tri[n]->hosted_dem.push_back(tmp_dem);
break;
}
}
}
for (int n = 0; n < 4; n++)
{
if (cnst_tri[n] != nullptr)
{
std::sort(cnst_tri[n]->hosted_dem.begin(), cnst_tri[n]->hosted_dem.end(), compare_dem_point);
}
}
// delete the old triangle
old_tri->hosted_dem.clear();
delete old_tri; old_tri = nullptr;
tmp_tri->hosted_dem.clear();
delete tmp_tri; tmp_tri = nullptr;
}
else
{
// build hosted dem for the new triangles
for (int d = 0; d < old_tri->hosted_dem.size(); d++)
{
tmp_dem = old_tri->hosted_dem[d];
for (int n = 0; n < 4; n++)
{
if (cnst_tri[n] != nullptr && cnst_tri[n]->bound_location(tmp_dem->x, tmp_dem->y))
{
tmp_dem->host = cnst_tri[n];
tmp_dem->err = fabs(cnst_tri[n]->interpolate(tmp_dem->x, tmp_dem->y) - tmp_dem->elev);
cnst_tri[n]->hosted_dem.push_back(tmp_dem);
break;
}
}
}
// Sort dem_grid in the desceding order with respect to the error
std::sort(dem_grid.begin(), dem_grid.end(), compare_dem_point);
for (int n = 0; n < 4; n++)
{
if (cnst_tri[n] != nullptr)
{
std::sort(cnst_tri[n]->hosted_dem.begin(), cnst_tri[n]->hosted_dem.end(), compare_dem_point);
}
}
// delete the old triangle
old_tri->hosted_dem.clear();
delete old_tri; old_tri = nullptr;
}
// Make sure cnst_tri meet the empty circumcircle condition
for (int n = 0; n < 4; ++n)
{
if (cnst_tri[n] != nullptr)
{
make_delaunay(cnst_tri[n]);
}
}
// get maximal errors from out_tris and sort dem_tri
dem_tri.clear(); dem_tri.reserve(out_tris.size());
for (int t = 0; t < out_tris.size(); t++)
{
if (!out_tris[t]->hosted_dem.empty())
{
dem_tri.push_back(out_tris[t]->hosted_dem[0]);
}
}
std::sort(dem_tri.begin(), dem_tri.end(), compare_dem_point);
}
if (err_records != nullptr)
{
err_records->push_back(dem_grid[0]->err);
err_records->push_back(dem_tri[0]->err);
}
// destroy remaining DEM data
for (int i = 0; i < dem_grid.size(); ++i)
// assign triangles index
for (int i = 0; i < out_tris.size(); i++)
{
tmp_dem = dem_grid[i];
delete tmp_dem; tmp_dem = nullptr;
out_tris[i]->id = i;
// destroy remaining DEM data
for (int d = 0; d < out_tris[i]->hosted_dem.size(); d++)
{
tmp_dem = out_tris[i]->hosted_dem[d];
delete tmp_dem; tmp_dem = nullptr;
}
}
return;
}

View File

@ -13,8 +13,6 @@
#include "vector"
#include "algorithm"
#include "iostream"
#define ZERO 1e-5
// Start vertex definition
@ -51,77 +49,56 @@ bool is_collinear(vertex2dc *a_ptr, vertex2dc *b_ptr, vertex2dc *c_ptr) // Test
}
return false;
}
void circumcircle(vertex2dc *v0, vertex2dc *v1, vertex2dc *v2, double &cx, double &cy, double &cr) // calculate the circumcircle from three points
{
double s = 0.5 / ((v1->x - v0->x) * (v2->y - v0->y) - (v1->y - v0->y) * (v2->x - v0->x));
double m = v1->x*v1->x - v0->x*v0->x + v1->y*v1->y - v0->y*v0->y;
double u = v2->x*v2->x - v0->x*v0->x + v2->y*v2->y - v0->y*v0->y;
cx = ((v2->y - v0->y)*m + (v0->y - v1->y)*u)*s;
cy = ((v0->x - v2->x)*m + (v1->x - v0->x)*u)*s;
cr = (v0->x - cx)*(v0->x - cx) + (v0->y - cy)*(v0->y - cy); // not need to calculate the squared root here
return;
}
// End vertex definition
// Start DEM definition
struct triangle;
struct dem_point
// Start edge definition
struct edge
{
double x, y; // position of the DEM location
double elev; // elevation at the DEM location
double err; // error of the TIN with respect to the elevation
triangle *host;
vertex2dc *vert[2]; // vertex of the edge
dem_point() : x(NAN), y(NAN), elev(NAN), err(0.0), host(nullptr) {}
dem_point(double inx, double iny, double inelev) {set(inx, iny, inelev);}
void set(double inx, double iny, double inelev)
edge() {vert[0] = vert[1] = nullptr;}
edge(vertex2dc *v0ptr, vertex2dc *v1ptr) {set(v0ptr, v1ptr);}
void set(vertex2dc *v0ptr, vertex2dc *v1ptr)
{
x = inx; y = iny; elev = inelev; err = 0.0; host = nullptr;
vert[0] = v0ptr; vert[1] = v1ptr;
return;
}
};
bool compare_dem_point(dem_point *a, dem_point *b) // determination function for std::sort
bool operator ==(const edge &a, const edge &b) // overload the == operator for edge type
{
if (a->err > b->err) return true;
if((a.vert[0] == b.vert[0] && a.vert[1] == b.vert[1]) ||
(a.vert[0] == b.vert[1] && a.vert[1] == b.vert[0]))
{
return true;
}
return false;
}
// End DEM definition
// End edge definition
// Start triangle definition
struct dem_point;
/* Start triangle definition
* v2
* /\
* / \
* n2 / \ n1
* / \
* /------------\
* v0 n0 v1
*/
struct triangle
{
int id;
vertex2dc *vert[3]; // vertex of the triangle
triangle *neigh[3]; // neighbors of the triangle
double cx, cy; // center of the triangle's circumcircle
double cr; // radius of the circumcircle
std::vector<dem_point*> hosted_dem;
std::vector<dem_point*> circum_dem;
triangle() {vert[0] = vert[1] = vert[2] = nullptr; neigh[0] = neigh[1] = neigh[2] = nullptr;}
triangle() {vert[0] = vert[1] = vert[2] = nullptr;}
triangle(vertex2dc *v0ptr, vertex2dc *v1ptr, vertex2dc *v2ptr) {set(v0ptr, v1ptr, v2ptr);}
void set(vertex2dc *v0ptr, vertex2dc *v1ptr, vertex2dc *v2ptr)
{
vert[0] = v0ptr; vert[1] = v1ptr; vert[2] = v2ptr;
neigh[0] = neigh[1] = neigh[2] = nullptr;
circumcircle(vert[0], vert[1], vert[2], cx, cy, cr);
return;
}
void set_neighbor(triangle *n0ptr, triangle *n1ptr, triangle *n2ptr)
{
neigh[0] = n0ptr; neigh[1] = n1ptr; neigh[2] = n2ptr;
double s = 0.5 / ((vert[1]->x - vert[0]->x) * (vert[2]->y - vert[0]->y) - (vert[1]->y - vert[0]->y) * (vert[2]->x - vert[0]->x));
double m = vert[1]->x * vert[1]->x - vert[0]->x * vert[0]->x + vert[1]->y * vert[1]->y - vert[0]->y * vert[0]->y;
double u = vert[2]->x * vert[2]->x - vert[0]->x * vert[0]->x + vert[2]->y * vert[2]->y - vert[0]->y * vert[0]->y;
cx = ((vert[2]->y - vert[0]->y) * m + (vert[0]->y - vert[1]->y) * u) * s;
cy = ((vert[0]->x - vert[2]->x) * m + (vert[1]->x - vert[0]->x) * u) * s;
cr = (vert[0]->x - cx) * (vert[0]->x - cx) + (vert[0]->y - cy) * (vert[0]->y - cy); // not need to sqrt() here
return;
}
@ -151,285 +128,33 @@ struct triangle
return (a1*vert[0]->elev + a2*vert[1]->elev + a3*vert[2]->elev)/(a1 + a2 + a3);
}
};
/**
* @brief Flip neighboring triangles and their neighbors
*
* original
*
* /\
* / \
* / \
* / t \
* t_id-------\ t_id (0, 1 or 2)
* \--------/
* \ /
* \ n /
* \ /
* \/
* n_id (0, 1 or 2)
*
* flipped
*
* /|\
* / | \
* / | \
* / | \
* t_id | \ t_id (0, 1 or 2)
* \ t | n /
* \ | /
* \ | /
* \ | /
* \|/
* n_id (0, 1 or 2)
*
* @param t target triangle
* @param n neighboring triangle
* @param t_vid reference index of the target triangle
* @param n_vid reference index of the neighboring triangle
*/
void flip_neighboring_triangles(triangle *t, triangle *n, int t_id, int n_id)
{
t->vert[(t_id+1)%3] = n->vert[n_id]; // flip t
circumcircle(t->vert[0], t->vert[1], t->vert[2], t->cx, t->cy, t->cr); // update circumcircle
n->vert[(n_id+2)%3] = t->vert[(t_id+2)%3]; // flip n
circumcircle(n->vert[0], n->vert[1], n->vert[2], n->cx, n->cy, n->cr); // update circumcircle
// set side neighbors
t->neigh[t_id] = n->neigh[(n_id+2)%3];
n->neigh[(n_id+1)%3] = t->neigh[(t_id+1)%3];
// set opposite neighbors
t->neigh[(t_id+1)%3] = n;
n->neigh[(n_id+2)%3] = t;
// set oppsite neighbors
if (t->neigh[t_id] != nullptr)
{
for (int i = 0; i < 3; i++)
{
if (t->neigh[t_id]->neigh[i] == n)
{
t->neigh[t_id]->neigh[i] = t;
break;
}
}
}
if (n->neigh[(n_id+1)%3] != nullptr)
{
for (int i = 0; i < 3; i++)
{
if (n->neigh[(n_id+1)%3]->neigh[i] == t)
{
n->neigh[(n_id+1)%3]->neigh[i] = n;
break;
}
}
}
// move hosted DEM points
dem_point *tmp_dem;
std::vector<dem_point*>::iterator d_iter;
for (d_iter = t->hosted_dem.begin(); d_iter != t->hosted_dem.end(); )
{
tmp_dem = *d_iter;
if (n->bound_location(tmp_dem->x, tmp_dem->y))
{
tmp_dem->host = n;
n->hosted_dem.push_back(tmp_dem);
d_iter = t->hosted_dem.erase(d_iter);
}
else d_iter++;
}
for (d_iter = n->hosted_dem.begin(); d_iter != n->hosted_dem.end(); )
{
tmp_dem = *d_iter;
if (t->bound_location(tmp_dem->x, tmp_dem->y))
{
tmp_dem->host = t;
t->hosted_dem.push_back(tmp_dem);
d_iter = n->hosted_dem.erase(d_iter);
}
else d_iter++;
}
for (int i = 0; i < n->hosted_dem.size(); i++)
{
tmp_dem = n->hosted_dem[i];
tmp_dem->err = fabs(n->interpolate(tmp_dem->x, tmp_dem->y) - tmp_dem->elev);
}
for (int i = 0; i < t->hosted_dem.size(); i++)
{
tmp_dem = t->hosted_dem[i];
tmp_dem->err = fabs(t->interpolate(tmp_dem->x, tmp_dem->y) - tmp_dem->elev);
}
std::sort(t->hosted_dem.begin(), t->hosted_dem.end(), compare_dem_point);
std::sort(n->hosted_dem.begin(), n->hosted_dem.end(), compare_dem_point);
return;
}
/**
* @brief Make sure that the input triangle meets the empty circumcircle condition
*
* @param t Input triangle
*/
void make_delaunay(triangle *t)
{
double dist;
vertex2dc *n_vert;
triangle *n_tri;
dem_point *tmp_dem;
for (int n = 0; n < 3; n++)
{
if (t->neigh[n] != nullptr) // must has neighbor on this side
{
n_tri = t->neigh[n];
for (int v = 0; v < 3; v++)
{
n_vert = n_tri->vert[v];
if (n_vert != t->vert[n] && n_vert != t->vert[(n+1)%3]) // find the opposite vertex
{
dist = (t->cx - n_vert->x) * (t->cx - n_vert->x) +
(t->cy - n_vert->y) * (t->cy - n_vert->y);
if ((dist - t->cr) < -1.0*ZERO) // A very restrict condition. The testing point must be really inside the circumcircle
{
flip_neighboring_triangles(t, n_tri, n, v);
// Make sure the triangles also meet the empty circumcircle condition after flipping
make_delaunay(t);
make_delaunay(n_tri);
return; // Neighborhood changed. The current loop is not valid any more.
}
break; // no need to search more
}
}
}
}
return;
}
triangle *split_triangle(vertex2dc *v, triangle *t, triangle *new_t[4])
{
vertex2dc *tmp_vert;
triangle *tmp_tri;
new_t[0] = new_t[1] = new_t[2] = new_t[3] = nullptr;
// Check for collinear
for (int i = 0; i < 3; i++)
{
if (is_collinear(t->vert[i], t->vert[(i+1)%3], v))
{
if (t->neigh[i] == nullptr)
{
tmp_tri = new triangle(t->vert[i], v, t->vert[(i+2)%3]); new_t[0] = tmp_tri;
tmp_tri = new triangle(t->vert[(i+2)%3], v, t->vert[(i+1)%3]); new_t[1] = tmp_tri;
new_t[0]->set_neighbor(nullptr, new_t[1], t->neigh[(i+2)%3]);
new_t[1]->set_neighbor(new_t[0], nullptr, t->neigh[(i+1)%3]);
for (int n = 0; n < 2; n++)
{
if (new_t[n]->neigh[2] != nullptr)
{
for (int k = 0; k < 3; ++k) // replace neighbor for the oppositing triangle
{
if (new_t[n]->neigh[2]->neigh[k] == t)
{
new_t[n]->neigh[2]->neigh[k] = new_t[n];
break;
}
}
}
}
return nullptr;
}
for (int k = 0; k < 3; k++)
{
tmp_vert = t->neigh[i]->vert[k];
if (tmp_vert != t->vert[i] && tmp_vert != t->vert[(i+1)%3])
{
tmp_tri = new triangle(t->vert[i], v, t->vert[(i+2)%3]); new_t[0] = tmp_tri;
tmp_tri = new triangle(t->vert[(i+2)%3], v, t->vert[(i+1)%3]); new_t[1] = tmp_tri;
tmp_tri = new triangle(tmp_vert, v, t->vert[i]); new_t[2] = tmp_tri;
tmp_tri = new triangle(t->vert[(i+1)%3], v, tmp_vert); new_t[3] = tmp_tri;
new_t[0]->set_neighbor(new_t[2], new_t[1], t->neigh[(i+2)%3]);
new_t[1]->set_neighbor(new_t[0], new_t[3], t->neigh[(i+1)%3]);
new_t[2]->set_neighbor(new_t[3], new_t[0], t->neigh[i]->neigh[(k+2)%3]);
new_t[3]->set_neighbor(new_t[1], new_t[2], t->neigh[i]->neigh[k]);
for (int n = 0; n < 2; n++)
{
if (new_t[n]->neigh[2] != nullptr)
{
for (int k = 0; k < 3; ++k) // replace neighbor for the oppositing triangle
{
if (new_t[n]->neigh[2]->neigh[k] == t)
{
new_t[n]->neigh[2]->neigh[k] = new_t[n];
break;
}
}
}
}
for (int n = 2; n < 4; n++)
{
if (new_t[n]->neigh[2] != nullptr)
{
for (int k = 0; k < 3; ++k) // replace neighbor for the oppositing triangle
{
if (new_t[n]->neigh[2]->neigh[k] == t->neigh[i])
{
new_t[n]->neigh[2]->neigh[k] = new_t[n];
break;
}
}
}
}
break;
}
}
return t->neigh[i];;
}
}
for (int n = 0; n < 3; ++n)
{
tmp_tri = new triangle(t->vert[n], t->vert[(n+1)%3], v);
new_t[n] = tmp_tri;
}
// sort neighbors for new triangles
for (int n = 0; n < 3; ++n)
{
if (t->neigh[n] == nullptr)
{
new_t[n]->set_neighbor(nullptr, new_t[(n+1)%3], new_t[(n+2)%3]);
}
else
{
new_t[n]->set_neighbor(t->neigh[n], new_t[(n+1)%3], new_t[(n+2)%3]);
for (int k = 0; k < 3; ++k) // replace neighbor for the oppositing triangle
{
if (t->neigh[n]->neigh[k] == t)
{
t->neigh[n]->neigh[k] = new_t[n];
break;
}
}
}
}
return nullptr;
}
// End triangle definition
// Start DEM definition
struct dem_point
{
double x, y; // position of the DEM location
double elev; // elevation at the DEM location
double err; // error of the TIN with respect to the elevation
triangle *host; // host triangle of the DEM location
std::vector<triangle*> circum_host; // triangles which circumcircles include the location
dem_point() : x(NAN), y(NAN), elev(NAN), host(nullptr) {}
dem_point(double inx, double iny, double inelev) {set(inx, iny, inelev);}
void set(double inx, double iny, double inelev)
{
x = inx; y = iny; elev = inelev; host = nullptr;
return;
}
};
bool compare_dem_point(dem_point *a, dem_point *b)
{
if (a->err > b->err) return true;
return false;
}
// End DEM definition
/**
* @brief Generate the TIN from the DEM grid
*
@ -462,252 +187,274 @@ void dem2tin(const std::vector<double> &dem, double xmin, double xmax, double ym
if (dem.size() != xnum*ynum) return;
// Prepare the DEM points
dem_point *tmp_dem = nullptr;
std::vector<dem_point*> dem_tri;
dem_point *tmp_dem = nullptr;;
std::vector<dem_point*> dem_grid(xnum*ynum);
std::vector<dem_point*>::iterator d_iter;
for (int i = 0; i < ynum; ++i)
{
for (int j = 0; j < xnum; ++j)
{
dem_grid[j + i*xnum] = new dem_point(xmin + dx*j, ymin + dy*i, dem[j + i*xnum]);
}
}
vertex2dc *tmp_vert = nullptr;
tmp_vert = new vertex2dc(xmin, ymin, dem[0], out_verts.size()); // lower left corner
tmp_vert = new vertex2dc(xmin, ymin, dem_grid[0]->elev, out_verts.size()); // lower left corner
out_verts.push_back(tmp_vert);
tmp_vert = new vertex2dc(xmax, ymin, dem[xnum-1], out_verts.size()); // lower right corner
d_iter = dem_grid.begin();
tmp_dem = *d_iter; delete tmp_dem;
dem_grid.erase(d_iter);
tmp_vert = new vertex2dc(xmax, ymin, dem_grid[xnum-2]->elev, out_verts.size()); // lower right corner. Note the first location is already erased
out_verts.push_back(tmp_vert);
tmp_vert = new vertex2dc(xmax, ymax, dem[xnum*ynum-1], out_verts.size()); // upper right corner
d_iter = dem_grid.begin() + (xnum - 2);
tmp_dem = *d_iter; delete tmp_dem;
dem_grid.erase(d_iter);
tmp_vert = new vertex2dc(xmax, ymax, dem_grid[xnum*ynum-3]->elev, out_verts.size()); // upper right corner. Note the first two locations are already erased
out_verts.push_back(tmp_vert);
tmp_vert = new vertex2dc(xmin, ymax, dem[xnum*(ynum-1)], out_verts.size()); // upper left corner
d_iter = dem_grid.begin() + (xnum*ynum - 3);
tmp_dem = *d_iter; delete tmp_dem;
dem_grid.erase(d_iter);
tmp_vert = new vertex2dc(xmin, ymax, dem_grid[xnum*(ynum-1) - 2]->elev, out_verts.size()); // upper left corner. Note the first two locations are already erased
out_verts.push_back(tmp_vert);
triangle *old_tri = nullptr, *tmp_tri = nullptr;
triangle *cnst_tri[4];
d_iter = dem_grid.begin() + (xnum*(ynum-1) - 2);
tmp_dem = *d_iter; delete tmp_dem;
dem_grid.erase(d_iter);
triangle *tmp_tri = nullptr;
std::vector<triangle*> cnst_tri, new_tri;
std::vector<triangle*>::iterator t_iter;
if (!is_collinear(out_verts[0], out_verts[1], out_verts[2])) // Do not create triangle if the vertexes are collinear
{
tmp_tri = new triangle(out_verts[0], out_verts[1], out_verts[2]); // order the vertex anti-clock wise
out_tris.push_back(tmp_tri); tmp_tri = nullptr;
out_tris.push_back(tmp_tri);
}
if (!is_collinear(out_verts[0], out_verts[2], out_verts[3]))
{
tmp_tri = new triangle(out_verts[0], out_verts[2], out_verts[3]); // order the vertex anti-clock wise
out_tris.push_back(tmp_tri); tmp_tri = nullptr;
out_tris.push_back(tmp_tri);
}
if (out_tris.size() != 2) return;
out_tris[0]->set_neighbor(nullptr, nullptr, out_tris[1]);
out_tris[1]->set_neighbor(out_tris[0], nullptr, nullptr);
// Find host triangle for all DEM locations
int tmp_id;
for (int i = 0; i < ynum; ++i)
for (int i = 0; i < dem_grid.size(); ++i)
{
for (int j = 0; j < xnum; ++j)
for (int t = 0; t < out_tris.size(); ++t)
{
tmp_id = j + i*xnum;
if (tmp_id != 0 && tmp_id != (xnum-1) && tmp_id != (xnum*ynum-1) && tmp_id != (xnum*(ynum-1)))
if (out_tris[t]->bound_location(dem_grid[i]->x, dem_grid[i]->y))
{
tmp_dem = new dem_point(xmin + dx*j, ymin + dy*i, dem[j + i*xnum]);
for (int t = 0; t < out_tris.size(); ++t)
dem_grid[i]->host = out_tris[t];
break; // already found, no need to search more
}
}
}
// Find circum_host triangles for all DEM locations
double dist;
for (int i = 0; i < dem_grid.size(); ++i)
{
for (int t = 0; t < out_tris.size(); ++t)
{
dist = (out_tris[t]->cx - dem_grid[i]->x) * (out_tris[t]->cx - dem_grid[i]->x)
+ (out_tris[t]->cy - dem_grid[i]->y) * (out_tris[t]->cy - dem_grid[i]->y);
if ((dist - out_tris[t]->cr) <= ZERO) // Points on the circumcircle are also included
{
dem_grid[i]->circum_host.push_back(out_tris[t]);
out_tris[t]->circum_dem.push_back(dem_grid[i]);
// no beak here. There might be more than one triangle's circumcircle includes the DEM location
}
}
}
// loop all DEM data to find the location with maximal error
for (int i = 0; i < dem_grid.size(); ++i)
{
dem_grid[i]->err = fabs(dem_grid[i]->host->interpolate(dem_grid[i]->x, dem_grid[i]->y) - dem_grid[i]->elev);
}
// Sort dem_grid in the desceding order with respect to the error
std::sort(dem_grid.begin(), dem_grid.end(), compare_dem_point);
bool removed;
edge tmp_edge;
std::vector<edge> cnst_edge;
std::vector<edge>::iterator e_iter;
while (dem_grid[0]->err >= maxi_err) // quit til the threshold is meet
{
if (err_records != nullptr)
{
err_records->push_back(dem_grid[0]->err);
}
// create a new vertex
tmp_vert = new vertex2dc(dem_grid[0]->x, dem_grid[0]->y, dem_grid[0]->elev, out_verts.size());
out_verts.push_back(tmp_vert);
// Move triangles which circumcircles include the new vertex to the cnst_tri and remove it from out_tris
cnst_tri.clear();
for (int i = 0; i < dem_grid[0]->circum_host.size(); ++i)
{
cnst_tri.push_back(dem_grid[0]->circum_host[i]);
}
for (int c = 0; c < cnst_tri.size(); ++c)
{
for (t_iter = out_tris.begin(); t_iter != out_tris.end(); )
{
tmp_tri = *t_iter;
if (cnst_tri[c] == tmp_tri)
{
if (out_tris[t]->bound_location(tmp_dem->x, tmp_dem->y))
t_iter = out_tris.erase(t_iter);
break; // no need to search more
}
else t_iter++;
}
}
// remove cnst_tri from its circumed DEM's circum triangle list
for (int c = 0; c < cnst_tri.size(); ++c)
{
for (int i = 0; i < cnst_tri[c]->circum_dem.size(); ++i)
{
tmp_dem = cnst_tri[c]->circum_dem[i];
for (t_iter = tmp_dem->circum_host.begin(); t_iter != tmp_dem->circum_host.end(); )
{
if (cnst_tri[c] == *t_iter)
{
tmp_dem->host = out_tris[t];
tmp_dem->err = fabs(out_tris[t]->interpolate(tmp_dem->x, tmp_dem->y) - tmp_dem->elev);
out_tris[t]->hosted_dem.push_back(tmp_dem);
t_iter = tmp_dem->circum_host.erase(t_iter);
break;
}
else t_iter++;
}
}
}
// remove dem_grid[0] from its circumed triangle's circum DEM list
for (int c = 0; c < cnst_tri.size(); ++c)
{
for (d_iter = cnst_tri[c]->circum_dem.begin(); d_iter != cnst_tri[c]->circum_dem.end(); )
{
if (dem_grid[0] == *d_iter)
{
d_iter = cnst_tri[c]->circum_dem.erase(d_iter);
break;
}
else d_iter++;
}
}
// clear host and circumcircle triangles for the used DEM location
d_iter = dem_grid.begin();
tmp_dem = *d_iter; tmp_dem->circum_host.clear(); delete tmp_dem;
dem_grid.erase(d_iter);
// loop to remove duplicate edges
cnst_edge.clear();
for (int c = 0; c < cnst_tri.size(); ++c)
{
for (int e = 0; e < 3; ++e)
{
tmp_edge.set(cnst_tri[c]->vert[e], cnst_tri[c]->vert[(e+1)%3]);
removed = false;
for (e_iter = cnst_edge.begin(); e_iter != cnst_edge.end(); )
{
if (tmp_edge == *e_iter) // duplicate edge, remove from cnst_edge
{
e_iter = cnst_edge.erase(e_iter);
removed = true;
break; // no need to search more
}
else e_iter++;
}
if (!removed) // not a duplicate edge, add to the cnst_edge
{
cnst_edge.push_back(tmp_edge);
}
}
}
// construct new triangles and add to out_tris
new_tri.clear();
for (int c = 0; c < cnst_edge.size(); ++c)
{
if (!is_collinear(cnst_edge[c].vert[0], cnst_edge[c].vert[1], tmp_vert)) // Do not create triangle if the vertexes are collinear
{
tmp_tri = new triangle(cnst_edge[c].vert[0], cnst_edge[c].vert[1], tmp_vert); // order the vertex anti-clock wise
out_tris.push_back(tmp_tri);
new_tri.push_back(tmp_tri);
}
}
// loop all DEM data to update host triangles
for (int c = 0; c < cnst_tri.size(); ++c)
{
for (int i = 0; i < cnst_tri[c]->circum_dem.size(); ++i)
{
tmp_dem = cnst_tri[c]->circum_dem[i];
for (int n = 0; n < new_tri.size(); ++n) // search in newly created triangles to find new host
{
if (new_tri[n]->bound_location(tmp_dem->x, tmp_dem->y))
{
tmp_dem->host = new_tri[n];
tmp_dem->err = fabs(new_tri[n]->interpolate(tmp_dem->x, tmp_dem->y) - tmp_dem->elev);
break; // already found, no need to search more
}
}
}
}
}
// Sort hosted_dem in the desceding order with respect to the error. Add maximal zeros to dem_tri
for (int t = 0; t < out_tris.size(); ++t)
{
std::sort(out_tris[t]->hosted_dem.begin(), out_tris[t]->hosted_dem.end(), compare_dem_point);
dem_tri.push_back(out_tris[t]->hosted_dem[0]);
}
// Sort dem_tri
std::sort(dem_tri.begin(), dem_tri.end(), compare_dem_point);
while (dem_tri[0]->err >= maxi_err) // quit til the threshold is meet
{
if (err_records != nullptr)
// Find circum_host triangles for all DEM locations
// cnst_tri's circum area doesn't over cover new_tri's circum area
for (int i = 0; i < dem_grid.size(); ++i)
{
err_records->push_back(dem_tri[0]->err);
}
// find the triangle that includes dem_tri[0] and remove it from out_tris
for (t_iter = out_tris.begin(); t_iter != out_tris.end(); )
{
old_tri = *t_iter;
if (old_tri == dem_tri[0]->host)
for (int n = 0; n < new_tri.size(); ++n) // search in newly created triangles to find new circumcircle triangles
{
t_iter = out_tris.erase(t_iter);
break;
}
else t_iter++;
}
// remove dem_tri[0] from its host triangle's hosted DEM list
for (d_iter = old_tri->hosted_dem.begin(); d_iter != old_tri->hosted_dem.end(); )
{
if (dem_tri[0] == *d_iter)
{
d_iter = old_tri->hosted_dem.erase(d_iter);
break;
}
else d_iter++;
}
// create a new vertex
tmp_vert = new vertex2dc(dem_tri[0]->x, dem_tri[0]->y, dem_tri[0]->elev, out_verts.size());
out_verts.push_back(tmp_vert);
// Delete dem_tri[0]
tmp_dem = dem_tri[0]; delete tmp_dem;
// build new triangles
tmp_tri = split_triangle(tmp_vert, old_tri, cnst_tri);
for (int n = 0; n < 4; ++n)
{
if (cnst_tri[n] != nullptr)
{
out_tris.push_back(cnst_tri[n]);
dist = (new_tri[n]->cx - dem_grid[i]->x) * (new_tri[n]->cx - dem_grid[i]->x)
+ (new_tri[n]->cy - dem_grid[i]->y) * (new_tri[n]->cy - dem_grid[i]->y);
if ((dist - new_tri[n]->cr) <= ZERO) // Points on the circumcircle are also included
{
new_tri[n]->circum_dem.push_back(dem_grid[i]);
dem_grid[i]->circum_host.push_back(new_tri[n]);
// no beak here. There might be more than one triangle's circumcircle includes the DEM location
}
}
}
if (tmp_tri != nullptr)
// destroy memories used by cnst_edge
for (int c = 0; c < cnst_tri.size(); ++c)
{
for (t_iter = out_tris.begin(); t_iter != out_tris.end(); )
{
if (tmp_tri == *t_iter)
{
t_iter = out_tris.erase(t_iter);
break;
}
else t_iter++;
}
// build hosted dem for the new triangles
for (int d = 0; d < old_tri->hosted_dem.size(); d++)
{
tmp_dem = old_tri->hosted_dem[d];
for (int n = 0; n < 4; n++)
{
if (cnst_tri[n] != nullptr && cnst_tri[n]->bound_location(tmp_dem->x, tmp_dem->y))
{
tmp_dem->host = cnst_tri[n];
tmp_dem->err = fabs(cnst_tri[n]->interpolate(tmp_dem->x, tmp_dem->y) - tmp_dem->elev);
cnst_tri[n]->hosted_dem.push_back(tmp_dem);
break;
}
}
}
for (int d = 0; d < tmp_tri->hosted_dem.size(); d++)
{
tmp_dem = tmp_tri->hosted_dem[d];
for (int n = 0; n < 4; n++)
{
if (cnst_tri[n] != nullptr && cnst_tri[n]->bound_location(tmp_dem->x, tmp_dem->y))
{
tmp_dem->host = cnst_tri[n];
tmp_dem->err = fabs(cnst_tri[n]->interpolate(tmp_dem->x, tmp_dem->y) - tmp_dem->elev);
cnst_tri[n]->hosted_dem.push_back(tmp_dem);
break;
}
}
}
for (int n = 0; n < 4; n++)
{
if (cnst_tri[n] != nullptr)
{
std::sort(cnst_tri[n]->hosted_dem.begin(), cnst_tri[n]->hosted_dem.end(), compare_dem_point);
}
}
// delete the old triangle
old_tri->hosted_dem.clear();
delete old_tri; old_tri = nullptr;
tmp_tri->hosted_dem.clear();
tmp_tri = cnst_tri[c];
tmp_tri->circum_dem.clear();
delete tmp_tri; tmp_tri = nullptr;
}
else
{
// build hosted dem for the new triangles
for (int d = 0; d < old_tri->hosted_dem.size(); d++)
{
tmp_dem = old_tri->hosted_dem[d];
for (int n = 0; n < 4; n++)
{
if (cnst_tri[n] != nullptr && cnst_tri[n]->bound_location(tmp_dem->x, tmp_dem->y))
{
tmp_dem->host = cnst_tri[n];
tmp_dem->err = fabs(cnst_tri[n]->interpolate(tmp_dem->x, tmp_dem->y) - tmp_dem->elev);
cnst_tri[n]->hosted_dem.push_back(tmp_dem);
break;
}
}
}
for (int n = 0; n < 4; n++)
{
if (cnst_tri[n] != nullptr)
{
std::sort(cnst_tri[n]->hosted_dem.begin(), cnst_tri[n]->hosted_dem.end(), compare_dem_point);
}
}
// delete the old triangle
old_tri->hosted_dem.clear();
delete old_tri; old_tri = nullptr;
}
// Make sure cnst_tri meet the empty circumcircle condition
for (int n = 0; n < 4; ++n)
{
if (cnst_tri[n] != nullptr)
{
make_delaunay(cnst_tri[n]);
}
}
// get maximal errors from out_tris and sort dem_tri
dem_tri.clear(); dem_tri.reserve(out_tris.size());
for (int t = 0; t < out_tris.size(); t++)
{
if (!out_tris[t]->hosted_dem.empty())
{
dem_tri.push_back(out_tris[t]->hosted_dem[0]);
}
}
std::sort(dem_tri.begin(), dem_tri.end(), compare_dem_point);
// Sort dem_grid in the desceding order with respect to the error
std::sort(dem_grid.begin(), dem_grid.end(), compare_dem_point);
}
if (err_records != nullptr)
{
err_records->push_back(dem_tri[0]->err);
err_records->push_back(dem_grid[0]->err);
}
// assign triangles index
for (int i = 0; i < out_tris.size(); i++)
// destroy remaining DEM data
for (int i = 0; i < dem_grid.size(); ++i)
{
out_tris[i]->id = i;
// destroy remaining DEM data
for (int d = 0; d < out_tris[i]->hosted_dem.size(); d++)
{
tmp_dem = out_tris[i]->hosted_dem[d];
delete tmp_dem; tmp_dem = nullptr;
}
tmp_dem = dem_grid[i];
delete tmp_dem; tmp_dem = nullptr;
}
return;
}