update src
This commit is contained in:
parent
f5e1e808e1
commit
d6984a3270
@ -5,7 +5,7 @@
|
||||
#### Compile
|
||||
|
||||
```shell
|
||||
g++ demo.cpp
|
||||
g++ demo.cpp -O2
|
||||
```
|
||||
|
||||
#### Run demo
|
||||
|
BIN
Untitled.nc
Normal file
BIN
Untitled.nc
Normal file
Binary file not shown.
12
demo.cpp
12
demo.cpp
@ -6,10 +6,10 @@
|
||||
int main(int argc, char const *argv[])
|
||||
{
|
||||
// read dem grid
|
||||
std::vector<double> topo(10201);
|
||||
std::vector<double> topo(1002001);
|
||||
|
||||
std::ifstream infile("topo.txt");
|
||||
for (int i = 0; i < 10201; ++i)
|
||||
std::ifstream infile("topo2.txt");
|
||||
for (int i = 0; i < 1002001; ++i)
|
||||
{
|
||||
infile >> topo[i];
|
||||
}
|
||||
@ -18,10 +18,10 @@ int main(int argc, char const *argv[])
|
||||
std::vector<double> err_records;
|
||||
std::vector<vertex2dc*> tin_vert;
|
||||
std::vector<triangle*> tin_ele;
|
||||
dem2tin(topo, 0, 1000, 0, 1000, 10, 10, tin_vert, tin_ele, 1.0, &err_records);
|
||||
dem2tin(topo, 0, 1000, 0, 1000, 1, 1, tin_vert, tin_ele, 10.0, &err_records);
|
||||
|
||||
// Write a log file
|
||||
std::ofstream logfile("topo_TIN.log");
|
||||
std::ofstream logfile("topo2_TIN.log");
|
||||
logfile << "# Insertion Maxi-Error\n";
|
||||
for (int i = 0; i < err_records.size(); ++i)
|
||||
{
|
||||
@ -30,7 +30,7 @@ int main(int argc, char const *argv[])
|
||||
logfile.close();
|
||||
|
||||
// Write a Gmsh's .msh file
|
||||
std::ofstream outfile("topo_TIN.msh");
|
||||
std::ofstream outfile("topo2_TIN.msh");
|
||||
outfile << "$MeshFormat" << std::endl << "2.2 0 8" << std::endl << "$EndMeshFormat "<<std::endl;
|
||||
outfile << "$Nodes" << std::endl << tin_vert.size() << std::endl;
|
||||
for (int i = 0; i < tin_vert.size(); i++)
|
||||
|
168
tin.h
168
tin.h
@ -131,6 +131,7 @@ struct dem_point
|
||||
{
|
||||
double x, y; // position of the DEM location
|
||||
double elev; // elevation at the DEM location
|
||||
double err;
|
||||
triangle *host; // host triangle of the DEM location
|
||||
std::vector<triangle*> circum_host; // triangles which circumcircles include the location
|
||||
|
||||
@ -139,10 +140,60 @@ struct dem_point
|
||||
void set(double inx, double iny, double inelev)
|
||||
{
|
||||
x = inx; y = iny; elev = inelev; host = nullptr;
|
||||
circum_host.clear();
|
||||
return;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Utility function of the heap_sort function.
|
||||
*
|
||||
* @param a Input vector
|
||||
* @param[in] i vector's index i
|
||||
* @param[in] n vector's index n
|
||||
*/
|
||||
void update_heap(std::vector<dem_point*> &a, int i, int n)
|
||||
{
|
||||
int iMax = i, iLeft = 2 * i + 1, iRight = 2 * (i + 1);
|
||||
|
||||
if (iLeft < n && a[iMax]->err > a[iLeft]->err)
|
||||
{
|
||||
iMax = iLeft;
|
||||
}
|
||||
|
||||
if (iRight < n && a[iMax]->err > a[iRight]->err)
|
||||
{
|
||||
iMax = iRight;
|
||||
}
|
||||
|
||||
if (iMax != i)
|
||||
{
|
||||
dem_point *tmp = a[iMax]; a[iMax] = a[i]; a[i] = tmp;
|
||||
update_heap(a, iMax, n);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Heap sort of the dem_point vector in a descending order with respect to the error values
|
||||
*
|
||||
* @param a Input vector
|
||||
*/
|
||||
void heap_sort(std::vector<dem_point*> &a)
|
||||
{
|
||||
int n = a.size();
|
||||
for (int i = (n - 1) / 2; i >= 0; i--)
|
||||
{
|
||||
update_heap(a, i, n);
|
||||
}
|
||||
|
||||
dem_point *tmp;
|
||||
for (int i = n - 1; i > 0; --i)
|
||||
{
|
||||
tmp = a[i]; a[i] = a[0]; a[0] = tmp;
|
||||
update_heap(a, 0, i);
|
||||
}
|
||||
return;
|
||||
}
|
||||
// End DEM definition
|
||||
|
||||
/**
|
||||
@ -177,33 +228,46 @@ void dem2tin(const std::vector<double> &dem, double xmin, double xmax, double ym
|
||||
if (dem.size() != xnum*ynum) return;
|
||||
|
||||
// Prepare the DEM points
|
||||
std::vector<dem_point> dem_grid(xnum*ynum);
|
||||
std::vector<dem_point>::iterator d_iter;
|
||||
dem_point *tmp_dem;
|
||||
std::vector<dem_point*> dem_grid(xnum*ynum);
|
||||
std::vector<dem_point*>::iterator d_iter;
|
||||
for (int i = 0; i < ynum; ++i)
|
||||
{
|
||||
for (int j = 0; j < xnum; ++j)
|
||||
{
|
||||
dem_grid[j + i*xnum].set(xmin + dx*j, ymin + dy*i, dem[j + i*xnum]);
|
||||
dem_grid[j + i*xnum] = new dem_point(xmin + dx*j, ymin + dy*i, dem[j + i*xnum]);
|
||||
}
|
||||
}
|
||||
|
||||
vertex2dc *tmp_vert = nullptr;
|
||||
|
||||
tmp_vert = new vertex2dc(xmin, ymin, dem_grid[0].elev, out_verts.size()); // lower left corner
|
||||
tmp_vert = new vertex2dc(xmin, ymin, dem_grid[0]->elev, out_verts.size()); // lower left corner
|
||||
out_verts.push_back(tmp_vert);
|
||||
d_iter = dem_grid.begin(); dem_grid.erase(d_iter);
|
||||
|
||||
tmp_vert = new vertex2dc(xmax, ymin, dem_grid[xnum-2].elev, out_verts.size()); // lower right corner. Note the first location is already erased
|
||||
out_verts.push_back(tmp_vert);
|
||||
d_iter = dem_grid.begin() + (xnum - 2); dem_grid.erase(d_iter);
|
||||
d_iter = dem_grid.begin();
|
||||
tmp_dem = *d_iter; delete tmp_dem;
|
||||
dem_grid.erase(d_iter);
|
||||
|
||||
tmp_vert = new vertex2dc(xmax, ymax, dem_grid[xnum*ynum-3].elev, out_verts.size()); // upper right corner. Note the first two locations are already erased
|
||||
tmp_vert = new vertex2dc(xmax, ymin, dem_grid[xnum-2]->elev, out_verts.size()); // lower right corner. Note the first location is already erased
|
||||
out_verts.push_back(tmp_vert);
|
||||
d_iter = dem_grid.begin() + (xnum*ynum - 3); dem_grid.erase(d_iter);
|
||||
|
||||
tmp_vert = new vertex2dc(xmin, ymax, dem_grid[xnum*(ynum-1) - 2].elev, out_verts.size()); // upper left corner. Note the first two locations are already erased
|
||||
d_iter = dem_grid.begin() + (xnum - 2);
|
||||
tmp_dem = *d_iter; delete tmp_dem;
|
||||
dem_grid.erase(d_iter);
|
||||
|
||||
tmp_vert = new vertex2dc(xmax, ymax, dem_grid[xnum*ynum-3]->elev, out_verts.size()); // upper right corner. Note the first two locations are already erased
|
||||
out_verts.push_back(tmp_vert);
|
||||
d_iter = dem_grid.begin() + (xnum*(ynum-1) - 2); dem_grid.erase(d_iter);
|
||||
|
||||
d_iter = dem_grid.begin() + (xnum*ynum - 3);
|
||||
tmp_dem = *d_iter; delete tmp_dem;
|
||||
dem_grid.erase(d_iter);
|
||||
|
||||
tmp_vert = new vertex2dc(xmin, ymax, dem_grid[xnum*(ynum-1) - 2]->elev, out_verts.size()); // upper left corner. Note the first two locations are already erased
|
||||
out_verts.push_back(tmp_vert);
|
||||
|
||||
d_iter = dem_grid.begin() + (xnum*(ynum-1) - 2);
|
||||
tmp_dem = *d_iter; delete tmp_dem;
|
||||
dem_grid.erase(d_iter);
|
||||
|
||||
triangle *tmp_tri = nullptr;
|
||||
std::vector<triangle*> cnst_tri, new_tri;
|
||||
@ -226,9 +290,9 @@ void dem2tin(const std::vector<double> &dem, double xmin, double xmax, double ym
|
||||
{
|
||||
for (int t = 0; t < out_tris.size(); ++t)
|
||||
{
|
||||
if (out_tris[t]->bound_location(dem_grid[i].x, dem_grid[i].y))
|
||||
if (out_tris[t]->bound_location(dem_grid[i]->x, dem_grid[i]->y))
|
||||
{
|
||||
dem_grid[i].host = out_tris[t];
|
||||
dem_grid[i]->host = out_tris[t];
|
||||
break; // already found, no need to search more
|
||||
}
|
||||
}
|
||||
@ -240,52 +304,45 @@ void dem2tin(const std::vector<double> &dem, double xmin, double xmax, double ym
|
||||
{
|
||||
for (int t = 0; t < out_tris.size(); ++t)
|
||||
{
|
||||
dist = (out_tris[t]->cx - dem_grid[i].x) * (out_tris[t]->cx - dem_grid[i].x)
|
||||
+ (out_tris[t]->cy - dem_grid[i].y) * (out_tris[t]->cy - dem_grid[i].y);
|
||||
dist = (out_tris[t]->cx - dem_grid[i]->x) * (out_tris[t]->cx - dem_grid[i]->x)
|
||||
+ (out_tris[t]->cy - dem_grid[i]->y) * (out_tris[t]->cy - dem_grid[i]->y);
|
||||
if ((dist - out_tris[t]->cr) <= ZERO) // Points on the circumcircle are also included
|
||||
{
|
||||
dem_grid[i].circum_host.push_back(out_tris[t]);
|
||||
dem_grid[i]->circum_host.push_back(out_tris[t]);
|
||||
// no beak here. There might be more than one triangle's circumcircle includes the DEM location
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int now_maxi_id;
|
||||
double now_err, now_maxi_err;
|
||||
// loop all DEM data to find the location with maximal error
|
||||
for (int i = 0; i < dem_grid.size(); ++i)
|
||||
{
|
||||
dem_grid[i]->err = fabs(dem_grid[i]->host->interpolate(dem_grid[i]->x, dem_grid[i]->y) - dem_grid[i]->elev);
|
||||
}
|
||||
|
||||
heap_sort(dem_grid);
|
||||
|
||||
bool removed;
|
||||
edge tmp_edge;
|
||||
std::vector<edge> cnst_edge;
|
||||
std::vector<edge>::iterator e_iter;
|
||||
|
||||
do // quit til the threshold is meet
|
||||
while (dem_grid[0]->err >= maxi_err) // quit til the threshold is meet
|
||||
{
|
||||
// loop all DEM data to find the location with maximal error
|
||||
now_maxi_err = -1.0;
|
||||
for (int i = 0; i < dem_grid.size(); ++i)
|
||||
{
|
||||
now_err = fabs(dem_grid[i].host->interpolate(dem_grid[i].x, dem_grid[i].y) - dem_grid[i].elev);
|
||||
if (now_err > now_maxi_err)
|
||||
{
|
||||
now_maxi_err = now_err;
|
||||
now_maxi_id = i;
|
||||
}
|
||||
}
|
||||
|
||||
if (err_records != nullptr)
|
||||
{
|
||||
err_records->push_back(now_maxi_err);
|
||||
err_records->push_back(dem_grid[0]->err);
|
||||
}
|
||||
|
||||
// create a new vertex
|
||||
tmp_vert = new vertex2dc(dem_grid[now_maxi_id].x, dem_grid[now_maxi_id].y, dem_grid[now_maxi_id].elev, out_verts.size());
|
||||
tmp_vert = new vertex2dc(dem_grid[0]->x, dem_grid[0]->y, dem_grid[0]->elev, out_verts.size());
|
||||
out_verts.push_back(tmp_vert);
|
||||
|
||||
// Move triangles which circumcircles include the new vertex to the cnst_tri and remove it from out_tris
|
||||
cnst_tri.clear();
|
||||
for (int i = 0; i < dem_grid[now_maxi_id].circum_host.size(); ++i)
|
||||
for (int i = 0; i < dem_grid[0]->circum_host.size(); ++i)
|
||||
{
|
||||
cnst_tri.push_back(dem_grid[now_maxi_id].circum_host[i]);
|
||||
cnst_tri.push_back(dem_grid[0]->circum_host[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < cnst_tri.size(); ++i)
|
||||
@ -303,9 +360,10 @@ void dem2tin(const std::vector<double> &dem, double xmin, double xmax, double ym
|
||||
}
|
||||
|
||||
// clear host and circumcircle triangles for the used DEM location
|
||||
dem_grid[now_maxi_id].host = nullptr;
|
||||
dem_grid[now_maxi_id].circum_host.clear();
|
||||
d_iter = dem_grid.begin() + now_maxi_id; dem_grid.erase(d_iter);
|
||||
dem_grid[0]->circum_host.clear();
|
||||
d_iter = dem_grid.begin();
|
||||
tmp_dem = *d_iter; delete tmp_dem;
|
||||
dem_grid.erase(d_iter);
|
||||
|
||||
// loop to remove duplicate edges
|
||||
cnst_edge.clear();
|
||||
@ -351,11 +409,11 @@ void dem2tin(const std::vector<double> &dem, double xmin, double xmax, double ym
|
||||
{
|
||||
for (int i = 0; i < dem_grid.size(); ++i)
|
||||
{
|
||||
for (t_iter = dem_grid[i].circum_host.begin(); t_iter != dem_grid[i].circum_host.end(); )
|
||||
for (t_iter = dem_grid[i]->circum_host.begin(); t_iter != dem_grid[i]->circum_host.end(); )
|
||||
{
|
||||
if (cnst_tri[c] == *t_iter)
|
||||
{
|
||||
t_iter = dem_grid[i].circum_host.erase(t_iter);
|
||||
t_iter = dem_grid[i]->circum_host.erase(t_iter);
|
||||
break; // no need to search more
|
||||
}
|
||||
else t_iter++;
|
||||
@ -368,9 +426,10 @@ void dem2tin(const std::vector<double> &dem, double xmin, double xmax, double ym
|
||||
{
|
||||
for (int n = 0; n < new_tri.size(); ++n) // search in newly created triangles to find new host
|
||||
{
|
||||
if (new_tri[n]->bound_location(dem_grid[i].x, dem_grid[i].y))
|
||||
if (new_tri[n]->bound_location(dem_grid[i]->x, dem_grid[i]->y))
|
||||
{
|
||||
dem_grid[i].host = new_tri[n];
|
||||
dem_grid[i]->host = new_tri[n];
|
||||
dem_grid[i]->err = fabs(new_tri[n]->interpolate(dem_grid[i]->x, dem_grid[i]->y) - dem_grid[i]->elev);
|
||||
break; // already found, no need to search more
|
||||
}
|
||||
}
|
||||
@ -381,11 +440,11 @@ void dem2tin(const std::vector<double> &dem, double xmin, double xmax, double ym
|
||||
{
|
||||
for (int n = 0; n < new_tri.size(); ++n) // search in newly created triangles to find new circumcircle triangles
|
||||
{
|
||||
dist = (new_tri[n]->cx - dem_grid[i].x) * (new_tri[n]->cx - dem_grid[i].x)
|
||||
+ (new_tri[n]->cy - dem_grid[i].y) * (new_tri[n]->cy - dem_grid[i].y);
|
||||
dist = (new_tri[n]->cx - dem_grid[i]->x) * (new_tri[n]->cx - dem_grid[i]->x)
|
||||
+ (new_tri[n]->cy - dem_grid[i]->y) * (new_tri[n]->cy - dem_grid[i]->y);
|
||||
if ((dist - new_tri[n]->cr) <= ZERO) // Points on the circumcircle are also included
|
||||
{
|
||||
dem_grid[i].circum_host.push_back(new_tri[n]);
|
||||
dem_grid[i]->circum_host.push_back(new_tri[n]);
|
||||
// no beak here. There might be more than one triangle's circumcircle includes the DEM location
|
||||
}
|
||||
}
|
||||
@ -398,7 +457,20 @@ void dem2tin(const std::vector<double> &dem, double xmin, double xmax, double ym
|
||||
delete tmp_tri; tmp_tri = nullptr;
|
||||
}
|
||||
|
||||
} while (now_maxi_err >= maxi_err);
|
||||
heap_sort(dem_grid);
|
||||
}
|
||||
|
||||
if (err_records != nullptr)
|
||||
{
|
||||
err_records->push_back(dem_grid[0]->err);
|
||||
}
|
||||
|
||||
// destroy remaining DEM data
|
||||
for (int i = 0; i < dem_grid.size(); ++i)
|
||||
{
|
||||
tmp_dem = dem_grid[i];
|
||||
delete tmp_dem; tmp_dem = nullptr;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
1596
topo2_TIN.log
Normal file
1596
topo2_TIN.log
Normal file
File diff suppressed because it is too large
Load Diff
6312
topo2_TIN.msh
Normal file
6312
topo2_TIN.msh
Normal file
File diff suppressed because it is too large
Load Diff
@ -2086,10 +2086,10 @@
|
||||
2085 1.4206
|
||||
2086 1.1363
|
||||
2087 1.136
|
||||
2088 2.002
|
||||
2089 1.136
|
||||
2090 1.4285
|
||||
2091 3.5135
|
||||
2088 1.4285
|
||||
2089 3.5135
|
||||
2090 1.136
|
||||
2091 2.002
|
||||
2092 1.1352
|
||||
2093 1.69885
|
||||
2094 1.1346
|
||||
|
664
topo_TIN.msh
664
topo_TIN.msh
@ -2,7 +2,7 @@ $MeshFormat
|
||||
2.2 0 8
|
||||
$EndMeshFormat
|
||||
$Nodes
|
||||
2346
|
||||
2345
|
||||
1 0 0 0
|
||||
2 1000 0 16.0985
|
||||
3 1000 1000 1.00237
|
||||
@ -2093,11 +2093,11 @@ $Nodes
|
||||
2088 350 750 84.5986
|
||||
2089 330 750 89.6465
|
||||
2090 240 570 45.0428
|
||||
2091 700 420 115.744
|
||||
2092 690 420 125.532
|
||||
2093 520 470 168.821
|
||||
2094 510 470 168.277
|
||||
2095 510 460 176.628
|
||||
2091 520 470 168.821
|
||||
2092 510 470 168.277
|
||||
2093 510 460 176.628
|
||||
2094 700 420 115.744
|
||||
2095 690 420 125.532
|
||||
2096 910 280 26.9883
|
||||
2097 900 260 26.7625
|
||||
2098 750 460 65.73990000000001
|
||||
@ -2348,10 +2348,9 @@ $Nodes
|
||||
2343 450 950 9.091430000000001
|
||||
2344 630 540 77.0005
|
||||
2345 500 450 174.769
|
||||
2346 880 840 11.7802
|
||||
$EndNodes
|
||||
$Elements
|
||||
4637
|
||||
4635
|
||||
1 2 0 131 88 194
|
||||
2 2 0 198 32 199
|
||||
3 2 0 18 151 223
|
||||
@ -5811,28 +5810,28 @@ $Elements
|
||||
3457 2 0 1553 1399 2090
|
||||
3458 2 0 1399 1992 2090
|
||||
3459 2 0 1992 962 2090
|
||||
3460 2 0 564 303 2091
|
||||
3461 2 0 249 916 2092
|
||||
3462 2 0 916 762 2092
|
||||
3463 2 0 303 1796 2092
|
||||
3464 2 0 1796 249 2092
|
||||
3465 2 0 2091 303 2092
|
||||
3466 2 0 762 1112 2092
|
||||
3467 2 0 1112 2091 2092
|
||||
3468 2 0 47 463 2093
|
||||
3469 2 0 463 467 2093
|
||||
3470 2 0 467 884 2093
|
||||
3471 2 0 884 468 2093
|
||||
3472 2 0 1867 1869 2094
|
||||
3473 2 0 1869 546 2094
|
||||
3474 2 0 468 1867 2094
|
||||
3475 2 0 2093 468 2094
|
||||
3476 2 0 464 47 2095
|
||||
3477 2 0 532 464 2095
|
||||
3478 2 0 546 547 2095
|
||||
3479 2 0 2094 546 2095
|
||||
3480 2 0 47 2093 2095
|
||||
3481 2 0 2093 2094 2095
|
||||
3460 2 0 47 463 2091
|
||||
3461 2 0 463 467 2091
|
||||
3462 2 0 467 884 2091
|
||||
3463 2 0 884 468 2091
|
||||
3464 2 0 1867 1869 2092
|
||||
3465 2 0 1869 546 2092
|
||||
3466 2 0 468 1867 2092
|
||||
3467 2 0 2091 468 2092
|
||||
3468 2 0 464 47 2093
|
||||
3469 2 0 532 464 2093
|
||||
3470 2 0 546 547 2093
|
||||
3471 2 0 2092 546 2093
|
||||
3472 2 0 47 2091 2093
|
||||
3473 2 0 2091 2092 2093
|
||||
3474 2 0 564 303 2094
|
||||
3475 2 0 249 916 2095
|
||||
3476 2 0 916 762 2095
|
||||
3477 2 0 303 1796 2095
|
||||
3478 2 0 1796 249 2095
|
||||
3479 2 0 2094 303 2095
|
||||
3480 2 0 762 1112 2095
|
||||
3481 2 0 1112 2094 2095
|
||||
3482 2 0 1535 2051 2096
|
||||
3483 2 0 399 400 2097
|
||||
3484 2 0 2096 399 2097
|
||||
@ -5987,10 +5986,10 @@ $Elements
|
||||
3633 2 0 1511 563 2134
|
||||
3634 2 0 2133 1511 2134
|
||||
3635 2 0 1112 1873 2135
|
||||
3636 2 0 2091 1112 2135
|
||||
3636 2 0 2094 1112 2135
|
||||
3637 2 0 1873 1111 2135
|
||||
3638 2 0 1111 2133 2135
|
||||
3639 2 0 564 2091 2135
|
||||
3639 2 0 564 2094 2135
|
||||
3640 2 0 2133 2134 2135
|
||||
3641 2 0 2134 564 2135
|
||||
3642 2 0 1208 84 2136
|
||||
@ -6694,301 +6693,299 @@ $Elements
|
||||
4340 2 0 414 1044 2289
|
||||
4341 2 0 1044 1220 2289
|
||||
4342 2 0 1220 1218 2289
|
||||
4343 2 0 1218 2187 2289
|
||||
4344 2 0 2187 2064 2289
|
||||
4345 2 0 1066 1067 2290
|
||||
4346 2 0 1067 2051 2290
|
||||
4347 2 0 2084 1066 2290
|
||||
4348 2 0 2051 1535 2290
|
||||
4349 2 0 1535 2123 2290
|
||||
4350 2 0 822 2083 2290
|
||||
4351 2 0 2123 822 2290
|
||||
4352 2 0 2083 2084 2290
|
||||
4353 2 0 1714 281 2291
|
||||
4354 2 0 1158 1917 2291
|
||||
4355 2 0 281 2215 2291
|
||||
4356 2 0 1908 1158 2291
|
||||
4357 2 0 1907 1908 2291
|
||||
4358 2 0 2215 1907 2291
|
||||
4359 2 0 386 1663 2292
|
||||
4360 2 0 1876 386 2292
|
||||
4361 2 0 1877 1876 2292
|
||||
4362 2 0 387 1657 2292
|
||||
4363 2 0 1657 1878 2292
|
||||
4364 2 0 1663 387 2292
|
||||
4365 2 0 1878 1877 2292
|
||||
4366 2 0 308 1087 2293
|
||||
4367 2 0 1910 308 2293
|
||||
4368 2 0 1087 1088 2293
|
||||
4369 2 0 1088 1478 2293
|
||||
4370 2 0 1478 1910 2293
|
||||
4371 2 0 147 1179 2294
|
||||
4372 2 0 1179 1181 2294
|
||||
4373 2 0 1182 587 2294
|
||||
4374 2 0 587 1217 2294
|
||||
4375 2 0 1217 147 2294
|
||||
4376 2 0 1181 2036 2294
|
||||
4377 2 0 2036 1182 2294
|
||||
4378 2 0 1084 1514 2295
|
||||
4379 2 0 1916 1084 2295
|
||||
4380 2 0 311 1587 2295
|
||||
4381 2 0 1587 1916 2295
|
||||
4382 2 0 1514 1919 2295
|
||||
4383 2 0 1919 311 2295
|
||||
4384 2 0 1107 1105 2296
|
||||
4385 2 0 1105 1278 2296
|
||||
4386 2 0 1911 1107 2296
|
||||
4387 2 0 2296 1278 2297
|
||||
4388 2 0 229 1911 2297
|
||||
4389 2 0 1911 2296 2297
|
||||
4390 2 0 1277 1785 2298
|
||||
4391 2 0 1785 229 2298
|
||||
4392 2 0 1278 1787 2298
|
||||
4393 2 0 1787 1277 2298
|
||||
4394 2 0 229 2297 2298
|
||||
4395 2 0 2297 1278 2298
|
||||
4396 2 0 82 1427 2299
|
||||
4397 2 0 1427 1074 2299
|
||||
4398 2 0 1074 1997 2299
|
||||
4399 2 0 1997 1715 2299
|
||||
4400 2 0 1715 2285 2299
|
||||
4401 2 0 2285 82 2299
|
||||
4402 2 0 402 772 2300
|
||||
4403 2 0 1982 402 2300
|
||||
4404 2 0 772 1398 2300
|
||||
4405 2 0 2254 1982 2300
|
||||
4406 2 0 1398 2082 2300
|
||||
4407 2 0 2082 2254 2300
|
||||
4408 2 0 213 649 2301
|
||||
4409 2 0 649 265 2301
|
||||
4410 2 0 282 757 2301
|
||||
4411 2 0 757 213 2301
|
||||
4412 2 0 265 1098 2301
|
||||
4413 2 0 1098 184 2301
|
||||
4414 2 0 184 1602 2301
|
||||
4415 2 0 1602 282 2301
|
||||
4416 2 0 370 833 2302
|
||||
4417 2 0 1642 1643 2302
|
||||
4418 2 0 1643 370 2302
|
||||
4419 2 0 1641 1253 2303
|
||||
4420 2 0 1253 1642 2303
|
||||
4421 2 0 1642 2302 2303
|
||||
4422 2 0 833 2266 2303
|
||||
4423 2 0 2302 833 2303
|
||||
4424 2 0 2266 1641 2303
|
||||
4425 2 0 232 810 2304
|
||||
4426 2 0 810 1476 2304
|
||||
4427 2 0 175 725 2304
|
||||
4428 2 0 1476 175 2304
|
||||
4429 2 0 2009 232 2305
|
||||
4430 2 0 232 2304 2305
|
||||
4431 2 0 725 1702 2305
|
||||
4432 2 0 2304 725 2305
|
||||
4433 2 0 1702 2009 2305
|
||||
4434 2 0 882 1588 2306
|
||||
4435 2 0 1588 438 2306
|
||||
4436 2 0 1606 2156 2306
|
||||
4437 2 0 2156 882 2306
|
||||
4438 2 0 438 439 2307
|
||||
4439 2 0 2306 438 2307
|
||||
4440 2 0 1606 2306 2307
|
||||
4441 2 0 130 1617 2308
|
||||
4442 2 0 1237 789 2308
|
||||
4443 2 0 1617 1237 2308
|
||||
4444 2 0 790 438 2309
|
||||
4445 2 0 1100 130 2309
|
||||
4446 2 0 130 2308 2309
|
||||
4447 2 0 789 790 2309
|
||||
4448 2 0 2308 789 2309
|
||||
4449 2 0 311 1919 2310
|
||||
4450 2 0 1919 1100 2310
|
||||
4451 2 0 1100 2309 2310
|
||||
4452 2 0 1587 311 2310
|
||||
4453 2 0 438 1587 2310
|
||||
4454 2 0 2309 438 2310
|
||||
4455 2 0 1735 9 2311
|
||||
4456 2 0 1253 1641 2312
|
||||
4457 2 0 1641 1735 2312
|
||||
4458 2 0 1735 2311 2312
|
||||
4459 2 0 9 908 2313
|
||||
4460 2 0 908 2173 2313
|
||||
4461 2 0 2173 1822 2313
|
||||
4462 2 0 2311 9 2313
|
||||
4463 2 0 2312 2311 2313
|
||||
4464 2 0 1822 827 2313
|
||||
4465 2 0 827 2312 2313
|
||||
4466 2 0 1254 1253 2314
|
||||
4467 2 0 1987 1254 2314
|
||||
4468 2 0 827 2276 2314
|
||||
4469 2 0 2276 1987 2314
|
||||
4470 2 0 2312 827 2314
|
||||
4471 2 0 1253 2312 2314
|
||||
4472 2 0 136 1078 2315
|
||||
4473 2 0 2263 136 2315
|
||||
4474 2 0 1406 2264 2315
|
||||
4475 2 0 2264 2263 2315
|
||||
4476 2 0 1078 2277 2315
|
||||
4477 2 0 2277 1406 2315
|
||||
4478 2 0 826 922 2316
|
||||
4479 2 0 922 155 2316
|
||||
4480 2 0 1403 826 2316
|
||||
4481 2 0 1432 1403 2316
|
||||
4482 2 0 155 2272 2316
|
||||
4483 2 0 2272 1432 2316
|
||||
4484 2 0 835 781 2317
|
||||
4485 2 0 836 964 2317
|
||||
4486 2 0 964 835 2317
|
||||
4487 2 0 716 1843 2317
|
||||
4488 2 0 1843 836 2317
|
||||
4489 2 0 781 2193 2317
|
||||
4490 2 0 2193 716 2317
|
||||
4491 2 0 369 2053 2318
|
||||
4492 2 0 2053 615 2318
|
||||
4493 2 0 2251 369 2318
|
||||
4494 2 0 615 1575 2318
|
||||
4495 2 0 1575 2251 2318
|
||||
4496 2 0 976 993 2319
|
||||
4497 2 0 993 1978 2319
|
||||
4498 2 0 647 976 2319
|
||||
4499 2 0 2063 647 2319
|
||||
4500 2 0 1978 1372 2319
|
||||
4501 2 0 1372 2063 2319
|
||||
4502 2 0 1061 738 2320
|
||||
4503 2 0 1486 1061 2320
|
||||
4504 2 0 1204 37 2320
|
||||
4505 2 0 2155 1204 2320
|
||||
4506 2 0 37 1486 2320
|
||||
4507 2 0 738 2155 2320
|
||||
4508 2 0 1017 14 2321
|
||||
4509 2 0 1018 1017 2321
|
||||
4510 2 0 14 1072 2321
|
||||
4511 2 0 1072 1019 2321
|
||||
4512 2 0 1019 1717 2321
|
||||
4513 2 0 1602 1018 2321
|
||||
4514 2 0 1646 1602 2321
|
||||
4515 2 0 1717 1646 2321
|
||||
4516 2 0 510 1220 2322
|
||||
4517 2 0 1307 510 2322
|
||||
4518 2 0 1220 799 2322
|
||||
4519 2 0 799 1307 2322
|
||||
4520 2 0 863 406 2323
|
||||
4521 2 0 1449 863 2323
|
||||
4522 2 0 1292 1449 2323
|
||||
4523 2 0 406 1816 2323
|
||||
4524 2 0 1816 1292 2323
|
||||
4525 2 0 867 507 2324
|
||||
4526 2 0 1559 867 2324
|
||||
4527 2 0 507 2186 2324
|
||||
4528 2 0 2186 1266 2324
|
||||
4529 2 0 1266 2204 2324
|
||||
4530 2 0 2204 1559 2324
|
||||
4531 2 0 142 8 2325
|
||||
4532 2 0 8 408 2325
|
||||
4533 2 0 225 227 2325
|
||||
4534 2 0 408 225 2325
|
||||
4535 2 0 227 879 2325
|
||||
4536 2 0 879 1446 2325
|
||||
4537 2 0 1446 142 2325
|
||||
4538 2 0 1605 2175 2326
|
||||
4539 2 0 2175 1606 2326
|
||||
4540 2 0 439 1605 2326
|
||||
4541 2 0 2307 439 2326
|
||||
4542 2 0 1606 2307 2326
|
||||
4543 2 0 668 1573 2327
|
||||
4544 2 0 1681 668 2327
|
||||
4545 2 0 54 1116 2327
|
||||
4546 2 0 1772 54 2327
|
||||
4547 2 0 1116 1681 2327
|
||||
4548 2 0 1573 1772 2327
|
||||
4549 2 0 241 146 2328
|
||||
4550 2 0 816 241 2328
|
||||
4551 2 0 1322 816 2328
|
||||
4552 2 0 146 1396 2328
|
||||
4553 2 0 1396 1227 2328
|
||||
4554 2 0 1227 1466 2328
|
||||
4555 2 0 1466 1322 2328
|
||||
4556 2 0 51 1588 2329
|
||||
4557 2 0 1588 882 2329
|
||||
4558 2 0 2022 51 2329
|
||||
4559 2 0 1708 2022 2329
|
||||
4560 2 0 2156 1708 2329
|
||||
4561 2 0 882 2156 2329
|
||||
4562 2 0 340 1555 2330
|
||||
4563 2 0 1555 1485 2330
|
||||
4564 2 0 1485 1850 2330
|
||||
4565 2 0 1850 340 2330
|
||||
4566 2 0 1104 1790 2331
|
||||
4567 2 0 1790 1789 2331
|
||||
4568 2 0 1789 2283 2331
|
||||
4569 2 0 2285 1715 2331
|
||||
4570 2 0 2283 2284 2331
|
||||
4571 2 0 2284 2285 2331
|
||||
4572 2 0 1715 1714 2332
|
||||
4573 2 0 2331 1715 2332
|
||||
4574 2 0 1708 1104 2334
|
||||
4575 2 0 2022 1708 2334
|
||||
4576 2 0 2333 2022 2334
|
||||
4577 2 0 1104 2331 2334
|
||||
4578 2 0 2331 2332 2334
|
||||
4579 2 0 2332 2333 2334
|
||||
4580 2 0 1714 2291 2335
|
||||
4581 2 0 2291 1917 2335
|
||||
4582 2 0 1917 2022 2335
|
||||
4583 2 0 2022 2333 2335
|
||||
4584 2 0 2332 1714 2335
|
||||
4585 2 0 2333 2332 2335
|
||||
4586 2 0 1616 749 2336
|
||||
4587 2 0 749 1697 2336
|
||||
4588 2 0 1697 336 2336
|
||||
4589 2 0 342 1616 2336
|
||||
4590 2 0 2253 342 2336
|
||||
4591 2 0 336 2011 2336
|
||||
4592 2 0 2011 2253 2336
|
||||
4593 2 0 441 1735 2337
|
||||
4594 2 0 2103 441 2337
|
||||
4595 2 0 1735 1641 2337
|
||||
4596 2 0 1641 2266 2338
|
||||
4597 2 0 2337 1641 2338
|
||||
4598 2 0 2101 2103 2338
|
||||
4599 2 0 2103 2337 2338
|
||||
4600 2 0 2266 2101 2338
|
||||
4601 2 0 1175 61 2339
|
||||
4602 2 0 1575 1175 2339
|
||||
4603 2 0 2251 1575 2339
|
||||
4604 2 0 61 1930 2339
|
||||
4605 2 0 1930 1749 2339
|
||||
4606 2 0 1749 2251 2339
|
||||
4607 2 0 1728 100 2340
|
||||
4608 2 0 1866 1728 2340
|
||||
4609 2 0 1986 2030 2341
|
||||
4610 2 0 2030 1866 2341
|
||||
4611 2 0 260 1986 2341
|
||||
4612 2 0 1866 2340 2341
|
||||
4613 2 0 925 519 2342
|
||||
4614 2 0 1088 925 2342
|
||||
4615 2 0 2131 1088 2342
|
||||
4616 2 0 1731 163 2343
|
||||
4617 2 0 163 2131 2343
|
||||
4618 2 0 519 1730 2343
|
||||
4619 2 0 2342 519 2343
|
||||
4620 2 0 1730 1731 2343
|
||||
4621 2 0 2131 2342 2343
|
||||
4622 2 0 491 903 2344
|
||||
4623 2 0 902 304 2344
|
||||
4624 2 0 903 902 2344
|
||||
4625 2 0 304 1137 2344
|
||||
4626 2 0 1137 491 2344
|
||||
4627 2 0 547 274 2345
|
||||
4628 2 0 274 1690 2345
|
||||
4629 2 0 226 532 2345
|
||||
4630 2 0 651 226 2345
|
||||
4631 2 0 1690 651 2345
|
||||
4632 2 0 532 2095 2345
|
||||
4633 2 0 2095 547 2345
|
||||
4634 2 0 2063 414 2346
|
||||
4635 2 0 414 2289 2346
|
||||
4636 2 0 2064 2063 2346
|
||||
4637 2 0 2289 2064 2346
|
||||
4343 2 0 2063 414 2289
|
||||
4344 2 0 2064 2063 2289
|
||||
4345 2 0 1218 2187 2289
|
||||
4346 2 0 2187 2064 2289
|
||||
4347 2 0 1066 1067 2290
|
||||
4348 2 0 1067 2051 2290
|
||||
4349 2 0 2084 1066 2290
|
||||
4350 2 0 2051 1535 2290
|
||||
4351 2 0 1535 2123 2290
|
||||
4352 2 0 822 2083 2290
|
||||
4353 2 0 2123 822 2290
|
||||
4354 2 0 2083 2084 2290
|
||||
4355 2 0 1714 281 2291
|
||||
4356 2 0 1158 1917 2291
|
||||
4357 2 0 281 2215 2291
|
||||
4358 2 0 1908 1158 2291
|
||||
4359 2 0 1907 1908 2291
|
||||
4360 2 0 2215 1907 2291
|
||||
4361 2 0 386 1663 2292
|
||||
4362 2 0 1876 386 2292
|
||||
4363 2 0 1877 1876 2292
|
||||
4364 2 0 387 1657 2292
|
||||
4365 2 0 1657 1878 2292
|
||||
4366 2 0 1663 387 2292
|
||||
4367 2 0 1878 1877 2292
|
||||
4368 2 0 308 1087 2293
|
||||
4369 2 0 1910 308 2293
|
||||
4370 2 0 1087 1088 2293
|
||||
4371 2 0 1088 1478 2293
|
||||
4372 2 0 1478 1910 2293
|
||||
4373 2 0 147 1179 2294
|
||||
4374 2 0 1179 1181 2294
|
||||
4375 2 0 1182 587 2294
|
||||
4376 2 0 587 1217 2294
|
||||
4377 2 0 1217 147 2294
|
||||
4378 2 0 1181 2036 2294
|
||||
4379 2 0 2036 1182 2294
|
||||
4380 2 0 1084 1514 2295
|
||||
4381 2 0 1916 1084 2295
|
||||
4382 2 0 311 1587 2295
|
||||
4383 2 0 1587 1916 2295
|
||||
4384 2 0 1514 1919 2295
|
||||
4385 2 0 1919 311 2295
|
||||
4386 2 0 1107 1105 2296
|
||||
4387 2 0 1105 1278 2296
|
||||
4388 2 0 1911 1107 2296
|
||||
4389 2 0 2296 1278 2297
|
||||
4390 2 0 229 1911 2297
|
||||
4391 2 0 1911 2296 2297
|
||||
4392 2 0 1277 1785 2298
|
||||
4393 2 0 1785 229 2298
|
||||
4394 2 0 1278 1787 2298
|
||||
4395 2 0 1787 1277 2298
|
||||
4396 2 0 229 2297 2298
|
||||
4397 2 0 2297 1278 2298
|
||||
4398 2 0 82 1427 2299
|
||||
4399 2 0 1427 1074 2299
|
||||
4400 2 0 1074 1997 2299
|
||||
4401 2 0 1997 1715 2299
|
||||
4402 2 0 1715 2285 2299
|
||||
4403 2 0 2285 82 2299
|
||||
4404 2 0 402 772 2300
|
||||
4405 2 0 1982 402 2300
|
||||
4406 2 0 772 1398 2300
|
||||
4407 2 0 2254 1982 2300
|
||||
4408 2 0 1398 2082 2300
|
||||
4409 2 0 2082 2254 2300
|
||||
4410 2 0 213 649 2301
|
||||
4411 2 0 649 265 2301
|
||||
4412 2 0 282 757 2301
|
||||
4413 2 0 757 213 2301
|
||||
4414 2 0 265 1098 2301
|
||||
4415 2 0 1098 184 2301
|
||||
4416 2 0 184 1602 2301
|
||||
4417 2 0 1602 282 2301
|
||||
4418 2 0 370 833 2302
|
||||
4419 2 0 1642 1643 2302
|
||||
4420 2 0 1643 370 2302
|
||||
4421 2 0 1641 1253 2303
|
||||
4422 2 0 1253 1642 2303
|
||||
4423 2 0 1642 2302 2303
|
||||
4424 2 0 833 2266 2303
|
||||
4425 2 0 2302 833 2303
|
||||
4426 2 0 2266 1641 2303
|
||||
4427 2 0 232 810 2304
|
||||
4428 2 0 810 1476 2304
|
||||
4429 2 0 175 725 2304
|
||||
4430 2 0 1476 175 2304
|
||||
4431 2 0 2009 232 2305
|
||||
4432 2 0 232 2304 2305
|
||||
4433 2 0 725 1702 2305
|
||||
4434 2 0 2304 725 2305
|
||||
4435 2 0 1702 2009 2305
|
||||
4436 2 0 882 1588 2306
|
||||
4437 2 0 1588 438 2306
|
||||
4438 2 0 1606 2156 2306
|
||||
4439 2 0 2156 882 2306
|
||||
4440 2 0 438 439 2307
|
||||
4441 2 0 2306 438 2307
|
||||
4442 2 0 1606 2306 2307
|
||||
4443 2 0 130 1617 2308
|
||||
4444 2 0 1237 789 2308
|
||||
4445 2 0 1617 1237 2308
|
||||
4446 2 0 790 438 2309
|
||||
4447 2 0 1100 130 2309
|
||||
4448 2 0 130 2308 2309
|
||||
4449 2 0 789 790 2309
|
||||
4450 2 0 2308 789 2309
|
||||
4451 2 0 311 1919 2310
|
||||
4452 2 0 1919 1100 2310
|
||||
4453 2 0 1100 2309 2310
|
||||
4454 2 0 1587 311 2310
|
||||
4455 2 0 438 1587 2310
|
||||
4456 2 0 2309 438 2310
|
||||
4457 2 0 1735 9 2311
|
||||
4458 2 0 1253 1641 2312
|
||||
4459 2 0 1641 1735 2312
|
||||
4460 2 0 1735 2311 2312
|
||||
4461 2 0 9 908 2313
|
||||
4462 2 0 908 2173 2313
|
||||
4463 2 0 2173 1822 2313
|
||||
4464 2 0 2311 9 2313
|
||||
4465 2 0 2312 2311 2313
|
||||
4466 2 0 1822 827 2313
|
||||
4467 2 0 827 2312 2313
|
||||
4468 2 0 1254 1253 2314
|
||||
4469 2 0 1987 1254 2314
|
||||
4470 2 0 827 2276 2314
|
||||
4471 2 0 2276 1987 2314
|
||||
4472 2 0 2312 827 2314
|
||||
4473 2 0 1253 2312 2314
|
||||
4474 2 0 136 1078 2315
|
||||
4475 2 0 2263 136 2315
|
||||
4476 2 0 1406 2264 2315
|
||||
4477 2 0 2264 2263 2315
|
||||
4478 2 0 1078 2277 2315
|
||||
4479 2 0 2277 1406 2315
|
||||
4480 2 0 826 922 2316
|
||||
4481 2 0 922 155 2316
|
||||
4482 2 0 1403 826 2316
|
||||
4483 2 0 1432 1403 2316
|
||||
4484 2 0 155 2272 2316
|
||||
4485 2 0 2272 1432 2316
|
||||
4486 2 0 835 781 2317
|
||||
4487 2 0 836 964 2317
|
||||
4488 2 0 964 835 2317
|
||||
4489 2 0 716 1843 2317
|
||||
4490 2 0 1843 836 2317
|
||||
4491 2 0 781 2193 2317
|
||||
4492 2 0 2193 716 2317
|
||||
4493 2 0 369 2053 2318
|
||||
4494 2 0 2053 615 2318
|
||||
4495 2 0 2251 369 2318
|
||||
4496 2 0 615 1575 2318
|
||||
4497 2 0 1575 2251 2318
|
||||
4498 2 0 976 993 2319
|
||||
4499 2 0 993 1978 2319
|
||||
4500 2 0 647 976 2319
|
||||
4501 2 0 2063 647 2319
|
||||
4502 2 0 1978 1372 2319
|
||||
4503 2 0 1372 2063 2319
|
||||
4504 2 0 1061 738 2320
|
||||
4505 2 0 1486 1061 2320
|
||||
4506 2 0 1204 37 2320
|
||||
4507 2 0 2155 1204 2320
|
||||
4508 2 0 37 1486 2320
|
||||
4509 2 0 738 2155 2320
|
||||
4510 2 0 1017 14 2321
|
||||
4511 2 0 1018 1017 2321
|
||||
4512 2 0 14 1072 2321
|
||||
4513 2 0 1072 1019 2321
|
||||
4514 2 0 1019 1717 2321
|
||||
4515 2 0 1602 1018 2321
|
||||
4516 2 0 1646 1602 2321
|
||||
4517 2 0 1717 1646 2321
|
||||
4518 2 0 510 1220 2322
|
||||
4519 2 0 1307 510 2322
|
||||
4520 2 0 1220 799 2322
|
||||
4521 2 0 799 1307 2322
|
||||
4522 2 0 863 406 2323
|
||||
4523 2 0 1449 863 2323
|
||||
4524 2 0 1292 1449 2323
|
||||
4525 2 0 406 1816 2323
|
||||
4526 2 0 1816 1292 2323
|
||||
4527 2 0 867 507 2324
|
||||
4528 2 0 1559 867 2324
|
||||
4529 2 0 507 2186 2324
|
||||
4530 2 0 2186 1266 2324
|
||||
4531 2 0 1266 2204 2324
|
||||
4532 2 0 2204 1559 2324
|
||||
4533 2 0 142 8 2325
|
||||
4534 2 0 8 408 2325
|
||||
4535 2 0 225 227 2325
|
||||
4536 2 0 408 225 2325
|
||||
4537 2 0 227 879 2325
|
||||
4538 2 0 879 1446 2325
|
||||
4539 2 0 1446 142 2325
|
||||
4540 2 0 1605 2175 2326
|
||||
4541 2 0 2175 1606 2326
|
||||
4542 2 0 439 1605 2326
|
||||
4543 2 0 2307 439 2326
|
||||
4544 2 0 1606 2307 2326
|
||||
4545 2 0 668 1573 2327
|
||||
4546 2 0 1681 668 2327
|
||||
4547 2 0 54 1116 2327
|
||||
4548 2 0 1772 54 2327
|
||||
4549 2 0 1116 1681 2327
|
||||
4550 2 0 1573 1772 2327
|
||||
4551 2 0 241 146 2328
|
||||
4552 2 0 816 241 2328
|
||||
4553 2 0 1322 816 2328
|
||||
4554 2 0 146 1396 2328
|
||||
4555 2 0 1396 1227 2328
|
||||
4556 2 0 1227 1466 2328
|
||||
4557 2 0 1466 1322 2328
|
||||
4558 2 0 51 1588 2329
|
||||
4559 2 0 1588 882 2329
|
||||
4560 2 0 2022 51 2329
|
||||
4561 2 0 1708 2022 2329
|
||||
4562 2 0 2156 1708 2329
|
||||
4563 2 0 882 2156 2329
|
||||
4564 2 0 340 1555 2330
|
||||
4565 2 0 1555 1485 2330
|
||||
4566 2 0 1485 1850 2330
|
||||
4567 2 0 1850 340 2330
|
||||
4568 2 0 1104 1790 2331
|
||||
4569 2 0 1790 1789 2331
|
||||
4570 2 0 1789 2283 2331
|
||||
4571 2 0 2285 1715 2331
|
||||
4572 2 0 2283 2284 2331
|
||||
4573 2 0 2284 2285 2331
|
||||
4574 2 0 1715 1714 2332
|
||||
4575 2 0 2331 1715 2332
|
||||
4576 2 0 1708 1104 2334
|
||||
4577 2 0 2022 1708 2334
|
||||
4578 2 0 2333 2022 2334
|
||||
4579 2 0 1104 2331 2334
|
||||
4580 2 0 2331 2332 2334
|
||||
4581 2 0 2332 2333 2334
|
||||
4582 2 0 1714 2291 2335
|
||||
4583 2 0 2291 1917 2335
|
||||
4584 2 0 1917 2022 2335
|
||||
4585 2 0 2022 2333 2335
|
||||
4586 2 0 2332 1714 2335
|
||||
4587 2 0 2333 2332 2335
|
||||
4588 2 0 1616 749 2336
|
||||
4589 2 0 749 1697 2336
|
||||
4590 2 0 1697 336 2336
|
||||
4591 2 0 342 1616 2336
|
||||
4592 2 0 2253 342 2336
|
||||
4593 2 0 336 2011 2336
|
||||
4594 2 0 2011 2253 2336
|
||||
4595 2 0 441 1735 2337
|
||||
4596 2 0 2103 441 2337
|
||||
4597 2 0 1735 1641 2337
|
||||
4598 2 0 1641 2266 2338
|
||||
4599 2 0 2337 1641 2338
|
||||
4600 2 0 2101 2103 2338
|
||||
4601 2 0 2103 2337 2338
|
||||
4602 2 0 2266 2101 2338
|
||||
4603 2 0 1175 61 2339
|
||||
4604 2 0 1575 1175 2339
|
||||
4605 2 0 2251 1575 2339
|
||||
4606 2 0 61 1930 2339
|
||||
4607 2 0 1930 1749 2339
|
||||
4608 2 0 1749 2251 2339
|
||||
4609 2 0 1728 100 2340
|
||||
4610 2 0 1866 1728 2340
|
||||
4611 2 0 1986 2030 2341
|
||||
4612 2 0 2030 1866 2341
|
||||
4613 2 0 260 1986 2341
|
||||
4614 2 0 1866 2340 2341
|
||||
4615 2 0 925 519 2342
|
||||
4616 2 0 1088 925 2342
|
||||
4617 2 0 2131 1088 2342
|
||||
4618 2 0 1731 163 2343
|
||||
4619 2 0 163 2131 2343
|
||||
4620 2 0 519 1730 2343
|
||||
4621 2 0 2342 519 2343
|
||||
4622 2 0 1730 1731 2343
|
||||
4623 2 0 2131 2342 2343
|
||||
4624 2 0 491 903 2344
|
||||
4625 2 0 902 304 2344
|
||||
4626 2 0 903 902 2344
|
||||
4627 2 0 304 1137 2344
|
||||
4628 2 0 1137 491 2344
|
||||
4629 2 0 547 274 2345
|
||||
4630 2 0 274 1690 2345
|
||||
4631 2 0 226 532 2345
|
||||
4632 2 0 651 226 2345
|
||||
4633 2 0 1690 651 2345
|
||||
4634 2 0 532 2093 2345
|
||||
4635 2 0 2093 547 2345
|
||||
$EndElements
|
||||
$NodeData
|
||||
1
|
||||
@ -6998,7 +6995,7 @@ $NodeData
|
||||
3
|
||||
0
|
||||
1
|
||||
2346
|
||||
2345
|
||||
1 0
|
||||
2 16.0985
|
||||
3 1.00237
|
||||
@ -9089,11 +9086,11 @@ $NodeData
|
||||
2088 84.5986
|
||||
2089 89.6465
|
||||
2090 45.0428
|
||||
2091 115.744
|
||||
2092 125.532
|
||||
2093 168.821
|
||||
2094 168.277
|
||||
2095 176.628
|
||||
2091 168.821
|
||||
2092 168.277
|
||||
2093 176.628
|
||||
2094 115.744
|
||||
2095 125.532
|
||||
2096 26.9883
|
||||
2097 26.7625
|
||||
2098 65.73990000000001
|
||||
@ -9344,5 +9341,4 @@ $NodeData
|
||||
2343 9.091430000000001
|
||||
2344 77.0005
|
||||
2345 174.769
|
||||
2346 11.7802
|
||||
$EndNodeData
|
||||
|
Loading…
Reference in New Issue
Block a user