/** * @defgroup TIN * * @brief Generation of a Triangular Irregular Network (TIN) from a dense DEM grid. * * @author Yi Zhang * @date 2021-09-16 */ #ifndef _TIN_DELAUNAY_H #define _TIN_DELAUNAY_H #include "cmath" #include "vector" #include "algorithm" #define ZERO 1e-5 // Start vertex definition struct vertex2dc { unsigned int id; // index of the vertex double x, y; // position of the vertex double elev; // elevation at the vertex vertex2dc() : x(NAN), y(NAN), elev(NAN), id(0) {} vertex2dc(double inx, double iny, double inelev, unsigned int inid) {set(inx, iny, inelev, inid);} void set(double inx, double iny, double inelev, unsigned int inid) { x = inx; y = iny; elev = inelev; id = inid; return; } }; bool operator ==(const vertex2dc &a, const vertex2dc &b) // overload the == operator for vertex2dc type { if(fabs(a.x - b.x) <= ZERO && fabs(a.y - b.y) <= ZERO) { return true; } return false; } bool is_collinear(vertex2dc *a_ptr, vertex2dc *b_ptr, vertex2dc *c_ptr) // Test if the three points are on the same line { // |(y3−y1)(x2−x1)−(y2−y1)(x3−x1)| if (fabs((c_ptr->y - a_ptr->y)*(b_ptr->x - a_ptr->x) - (b_ptr->y - a_ptr->y)*(c_ptr->x - a_ptr->x)) <= ZERO) { return true; } return false; } // End vertex definition // Start edge definition struct edge { vertex2dc *vert[2]; // vertex of the edge edge() {vert[0] = vert[1] = nullptr;} edge(vertex2dc *v0ptr, vertex2dc *v1ptr) {set(v0ptr, v1ptr);} void set(vertex2dc *v0ptr, vertex2dc *v1ptr) { vert[0] = v0ptr; vert[1] = v1ptr; return; } }; bool operator ==(const edge &a, const edge &b) // overload the == operator for edge type { if((a.vert[0] == b.vert[0] && a.vert[1] == b.vert[1]) || (a.vert[0] == b.vert[1] && a.vert[1] == b.vert[0])) { return true; } return false; } // End edge definition // Start triangle definition struct dem_point; struct triangle { vertex2dc *vert[3]; // vertex of the triangle double cx, cy; // center of the triangle's circumcircle double cr; // radius of the circumcircle std::vector circum_dem; triangle() {vert[0] = vert[1] = vert[2] = nullptr;} triangle(vertex2dc *v0ptr, vertex2dc *v1ptr, vertex2dc *v2ptr) {set(v0ptr, v1ptr, v2ptr);} void set(vertex2dc *v0ptr, vertex2dc *v1ptr, vertex2dc *v2ptr) { vert[0] = v0ptr; vert[1] = v1ptr; vert[2] = v2ptr; double s = 0.5 / ((vert[1]->x - vert[0]->x) * (vert[2]->y - vert[0]->y) - (vert[1]->y - vert[0]->y) * (vert[2]->x - vert[0]->x)); double m = vert[1]->x * vert[1]->x - vert[0]->x * vert[0]->x + vert[1]->y * vert[1]->y - vert[0]->y * vert[0]->y; double u = vert[2]->x * vert[2]->x - vert[0]->x * vert[0]->x + vert[2]->y * vert[2]->y - vert[0]->y * vert[0]->y; cx = ((vert[2]->y - vert[0]->y) * m + (vert[0]->y - vert[1]->y) * u) * s; cy = ((vert[0]->x - vert[2]->x) * m + (vert[1]->x - vert[0]->x) * u) * s; cr = (vert[0]->x - cx) * (vert[0]->x - cx) + (vert[0]->y - cy) * (vert[0]->y - cy); // not need to sqrt() here return; } bool bound_location(double inx, double iny) // Test if the location is inside the triangle { double l1x, l1y, l2x, l2y; for (int i = 0; i < 3; i++) { l1x = vert[(i+1)%3]->x - vert[i]->x; l1y = vert[(i+1)%3]->y - vert[i]->y; l2x = inx - vert[i]->x; l2y = iny - vert[i]->y; if ((l1x*l2y - l1y*l2x) < 0) // This condition includes points on the triangle's edge { return false; } } return true; } double interpolate(double inx, double iny) // Interpolate the elevation of the given location inside the triangle { double a1 = 0.5 * ((vert[1]->x - inx)*(vert[2]->y - iny) - (vert[1]->y - iny)*(vert[2]->x - inx)); double a2 = 0.5 * ((vert[2]->x - inx)*(vert[0]->y - iny) - (vert[2]->y - iny)*(vert[0]->x - inx)); double a3 = 0.5 * ((vert[0]->x - inx)*(vert[1]->y - iny) - (vert[0]->y - iny)*(vert[1]->x - inx)); return (a1*vert[0]->elev + a2*vert[1]->elev + a3*vert[2]->elev)/(a1 + a2 + a3); } }; // End triangle definition // Start DEM definition struct dem_point { double x, y; // position of the DEM location double elev; // elevation at the DEM location double err; // error of the TIN with respect to the elevation triangle *host; // host triangle of the DEM location std::vector circum_host; // triangles which circumcircles include the location dem_point() : x(NAN), y(NAN), elev(NAN), host(nullptr) {} dem_point(double inx, double iny, double inelev) {set(inx, iny, inelev);} void set(double inx, double iny, double inelev) { x = inx; y = iny; elev = inelev; host = nullptr; return; } }; bool compare_dem_point(dem_point *a, dem_point *b) { if (a->err > b->err) return true; return false; } // End DEM definition /** * @brief Generate the TIN from the DEM grid * * @param[in] dem Input DEM grid (Ordered from lower left corner to the upper right corner) * @param[in] xmin The minimal coordinate of the DEM grid on the x-axis * @param[in] xmax The maximal coordinate of the DEM grid on the x-axis * @param[in] ymin The minimal coordinate of the DEM grid on the y-axis * @param[in] ymax The maximal coordinate of the DEM grid on the y-axis * @param[in] dx Data spacing of the DEM grid on the x-axis * @param[in] dy Data spacing of the DEM grid on the y-axis * @param out_verts The output vector of vertex's pointers. The user need to destroy the memories allocated by the function before destroy the vector * @param out_tris The output vector of triangle's pointers. The user need to destroy the memories allocated by the function before destroy the vector * @param[in] maxi_err Threshold to quit the algorithm. The default is 1e-0 * @param[in] err_records If this pointer is not NULL, record maximal error values after each insertion of vertex. */ void dem2tin(const std::vector &dem, double xmin, double xmax, double ymin, double ymax, double dx, double dy, std::vector &out_verts, std::vector &out_tris, double maxi_err = 1e-0, std::vector *err_records = nullptr) { if (!out_verts.empty()) out_verts.clear(); if (!out_tris.empty()) out_tris.clear(); if (err_records != nullptr && !err_records->empty()) err_records->clear(); if (dx <= 0.0 || dy <= 0.0 || maxi_err <= 0.0) return; if (xmin >= xmax || ymin >= ymax || (xmin + dx) > xmax || (ymin + dy) > ymax) return; int xnum = round((xmax - xmin)/dx) + 1; int ynum = round((ymax - ymin)/dy) + 1; if (dem.size() != xnum*ynum) return; // Prepare the DEM points dem_point *tmp_dem = nullptr;; std::vector dem_grid(xnum*ynum); std::vector::iterator d_iter; for (int i = 0; i < ynum; ++i) { for (int j = 0; j < xnum; ++j) { dem_grid[j + i*xnum] = new dem_point(xmin + dx*j, ymin + dy*i, dem[j + i*xnum]); } } vertex2dc *tmp_vert = nullptr; tmp_vert = new vertex2dc(xmin, ymin, dem_grid[0]->elev, out_verts.size()); // lower left corner out_verts.push_back(tmp_vert); d_iter = dem_grid.begin(); tmp_dem = *d_iter; delete tmp_dem; dem_grid.erase(d_iter); tmp_vert = new vertex2dc(xmax, ymin, dem_grid[xnum-2]->elev, out_verts.size()); // lower right corner. Note the first location is already erased out_verts.push_back(tmp_vert); d_iter = dem_grid.begin() + (xnum - 2); tmp_dem = *d_iter; delete tmp_dem; dem_grid.erase(d_iter); tmp_vert = new vertex2dc(xmax, ymax, dem_grid[xnum*ynum-3]->elev, out_verts.size()); // upper right corner. Note the first two locations are already erased out_verts.push_back(tmp_vert); d_iter = dem_grid.begin() + (xnum*ynum - 3); tmp_dem = *d_iter; delete tmp_dem; dem_grid.erase(d_iter); tmp_vert = new vertex2dc(xmin, ymax, dem_grid[xnum*(ynum-1) - 2]->elev, out_verts.size()); // upper left corner. Note the first two locations are already erased out_verts.push_back(tmp_vert); d_iter = dem_grid.begin() + (xnum*(ynum-1) - 2); tmp_dem = *d_iter; delete tmp_dem; dem_grid.erase(d_iter); triangle *tmp_tri = nullptr; std::vector cnst_tri, new_tri; std::vector::iterator t_iter; if (!is_collinear(out_verts[0], out_verts[1], out_verts[2])) // Do not create triangle if the vertexes are collinear { tmp_tri = new triangle(out_verts[0], out_verts[1], out_verts[2]); // order the vertex anti-clock wise out_tris.push_back(tmp_tri); } if (!is_collinear(out_verts[0], out_verts[2], out_verts[3])) { tmp_tri = new triangle(out_verts[0], out_verts[2], out_verts[3]); // order the vertex anti-clock wise out_tris.push_back(tmp_tri); } // Find host triangle for all DEM locations for (int i = 0; i < dem_grid.size(); ++i) { for (int t = 0; t < out_tris.size(); ++t) { if (out_tris[t]->bound_location(dem_grid[i]->x, dem_grid[i]->y)) { dem_grid[i]->host = out_tris[t]; break; // already found, no need to search more } } } // Find circum_host triangles for all DEM locations double dist; for (int i = 0; i < dem_grid.size(); ++i) { for (int t = 0; t < out_tris.size(); ++t) { dist = (out_tris[t]->cx - dem_grid[i]->x) * (out_tris[t]->cx - dem_grid[i]->x) + (out_tris[t]->cy - dem_grid[i]->y) * (out_tris[t]->cy - dem_grid[i]->y); if ((dist - out_tris[t]->cr) <= ZERO) // Points on the circumcircle are also included { dem_grid[i]->circum_host.push_back(out_tris[t]); out_tris[t]->circum_dem.push_back(dem_grid[i]); // no beak here. There might be more than one triangle's circumcircle includes the DEM location } } } // loop all DEM data to find the location with maximal error for (int i = 0; i < dem_grid.size(); ++i) { dem_grid[i]->err = fabs(dem_grid[i]->host->interpolate(dem_grid[i]->x, dem_grid[i]->y) - dem_grid[i]->elev); } // Sort dem_grid in the desceding order with respect to the error std::sort(dem_grid.begin(), dem_grid.end(), compare_dem_point); bool removed; edge tmp_edge; std::vector cnst_edge; std::vector::iterator e_iter; while (dem_grid[0]->err >= maxi_err) // quit til the threshold is meet { if (err_records != nullptr) { err_records->push_back(dem_grid[0]->err); } // create a new vertex tmp_vert = new vertex2dc(dem_grid[0]->x, dem_grid[0]->y, dem_grid[0]->elev, out_verts.size()); out_verts.push_back(tmp_vert); // Move triangles which circumcircles include the new vertex to the cnst_tri and remove it from out_tris cnst_tri.clear(); for (int i = 0; i < dem_grid[0]->circum_host.size(); ++i) { cnst_tri.push_back(dem_grid[0]->circum_host[i]); } for (int c = 0; c < cnst_tri.size(); ++c) { for (t_iter = out_tris.begin(); t_iter != out_tris.end(); ) { tmp_tri = *t_iter; if (cnst_tri[c] == tmp_tri) { t_iter = out_tris.erase(t_iter); break; // no need to search more } else t_iter++; } } // remove cnst_tri from its circumed DEM's circum triangle list for (int c = 0; c < cnst_tri.size(); ++c) { for (int i = 0; i < cnst_tri[c]->circum_dem.size(); ++i) { tmp_dem = cnst_tri[c]->circum_dem[i]; for (t_iter = tmp_dem->circum_host.begin(); t_iter != tmp_dem->circum_host.end(); ) { if (cnst_tri[c] == *t_iter) { t_iter = tmp_dem->circum_host.erase(t_iter); break; } else t_iter++; } } } // remove dem_grid[0] from its circumed triangle's circum DEM list for (int c = 0; c < cnst_tri.size(); ++c) { for (d_iter = cnst_tri[c]->circum_dem.begin(); d_iter != cnst_tri[c]->circum_dem.end(); ) { if (dem_grid[0] == *d_iter) { d_iter = cnst_tri[c]->circum_dem.erase(d_iter); break; } else d_iter++; } } // clear host and circumcircle triangles for the used DEM location d_iter = dem_grid.begin(); tmp_dem = *d_iter; tmp_dem->circum_host.clear(); delete tmp_dem; dem_grid.erase(d_iter); // loop to remove duplicate edges cnst_edge.clear(); for (int c = 0; c < cnst_tri.size(); ++c) { for (int e = 0; e < 3; ++e) { tmp_edge.set(cnst_tri[c]->vert[e], cnst_tri[c]->vert[(e+1)%3]); removed = false; for (e_iter = cnst_edge.begin(); e_iter != cnst_edge.end(); ) { if (tmp_edge == *e_iter) // duplicate edge, remove from cnst_edge { e_iter = cnst_edge.erase(e_iter); removed = true; break; // no need to search more } else e_iter++; } if (!removed) // not a duplicate edge, add to the cnst_edge { cnst_edge.push_back(tmp_edge); } } } // construct new triangles and add to out_tris new_tri.clear(); for (int c = 0; c < cnst_edge.size(); ++c) { if (!is_collinear(cnst_edge[c].vert[0], cnst_edge[c].vert[1], tmp_vert)) // Do not create triangle if the vertexes are collinear { tmp_tri = new triangle(cnst_edge[c].vert[0], cnst_edge[c].vert[1], tmp_vert); // order the vertex anti-clock wise out_tris.push_back(tmp_tri); new_tri.push_back(tmp_tri); } } // loop all DEM data to update host triangles for (int c = 0; c < cnst_tri.size(); ++c) { for (int i = 0; i < cnst_tri[c]->circum_dem.size(); ++i) { tmp_dem = cnst_tri[c]->circum_dem[i]; for (int n = 0; n < new_tri.size(); ++n) // search in newly created triangles to find new host { if (new_tri[n]->bound_location(tmp_dem->x, tmp_dem->y)) { tmp_dem->host = new_tri[n]; tmp_dem->err = fabs(new_tri[n]->interpolate(tmp_dem->x, tmp_dem->y) - tmp_dem->elev); break; // already found, no need to search more } } } } // Find circum_host triangles for all DEM locations // cnst_tri's circum area doesn't over cover new_tri's circum area for (int i = 0; i < dem_grid.size(); ++i) { for (int n = 0; n < new_tri.size(); ++n) // search in newly created triangles to find new circumcircle triangles { dist = (new_tri[n]->cx - dem_grid[i]->x) * (new_tri[n]->cx - dem_grid[i]->x) + (new_tri[n]->cy - dem_grid[i]->y) * (new_tri[n]->cy - dem_grid[i]->y); if ((dist - new_tri[n]->cr) <= ZERO) // Points on the circumcircle are also included { new_tri[n]->circum_dem.push_back(dem_grid[i]); dem_grid[i]->circum_host.push_back(new_tri[n]); // no beak here. There might be more than one triangle's circumcircle includes the DEM location } } } // destroy memories used by cnst_edge for (int c = 0; c < cnst_tri.size(); ++c) { tmp_tri = cnst_tri[c]; tmp_tri->circum_dem.clear(); delete tmp_tri; tmp_tri = nullptr; } // Sort dem_grid in the desceding order with respect to the error std::sort(dem_grid.begin(), dem_grid.end(), compare_dem_point); } if (err_records != nullptr) { err_records->push_back(dem_grid[0]->err); } // destroy remaining DEM data for (int i = 0; i < dem_grid.size(); ++i) { tmp_dem = dem_grid[i]; delete tmp_dem; tmp_dem = nullptr; } return; } #endif // _TIN_DELAUNAY_H