mlx-examples/llms/llama/llama.py

384 lines
12 KiB
Python
Raw Permalink Normal View History

2023-12-01 03:08:53 +08:00
# Copyright © 2023 Apple Inc.
import argparse
import glob
2023-12-13 04:48:15 +08:00
import json
import time
from dataclasses import dataclass
from pathlib import Path
from typing import Optional, Tuple
import mlx.core as mx
import mlx.nn as nn
from mlx.utils import tree_unflatten
from sentencepiece import SentencePieceProcessor
2023-12-13 04:48:15 +08:00
@dataclass
class ModelArgs:
dim: int
n_layers: int
head_dim: int
hidden_dim: int
n_heads: int
n_kv_heads: int
norm_eps: float
vocab_size: int
rope_theta: float
2023-12-18 23:47:55 +08:00
rope_traditional: bool = True
2023-12-13 04:48:15 +08:00
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.n_heads: int = args.n_heads
self.n_kv_heads: int = args.n_kv_heads
2023-12-13 04:48:15 +08:00
self.repeats = self.n_heads // self.n_kv_heads
2023-12-13 04:48:15 +08:00
self.scale = self.args.head_dim**-0.5
2023-12-13 04:48:15 +08:00
self.wq = nn.Linear(args.dim, args.n_heads * args.head_dim, bias=False)
self.wk = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
self.wv = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * args.head_dim, args.dim, bias=False)
self.rope = nn.RoPE(
2023-12-18 23:47:55 +08:00
args.head_dim, traditional=args.rope_traditional, base=args.rope_theta
)
2023-12-13 04:48:15 +08:00
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> Tuple[mx.array, Tuple[mx.array, mx.array]]:
2023-12-13 04:48:15 +08:00
B, L, D = x.shape
queries, keys, values = self.wq(x), self.wk(x), self.wv(x)
# Prepare the queries, keys and values for the attention computation
2023-12-13 04:48:15 +08:00
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
def repeat(a):
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
return a.reshape([B, self.n_heads, L, -1])
keys, values = map(repeat, (keys, values))
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
2023-12-13 04:48:15 +08:00
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
if mask is not None:
2023-12-13 04:48:15 +08:00
scores += mask
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.wo(output), (keys, values)
2023-12-13 04:48:15 +08:00
class FeedForward(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
2023-12-13 04:48:15 +08:00
self.w1 = nn.Linear(args.dim, args.hidden_dim, bias=False)
self.w2 = nn.Linear(args.hidden_dim, args.dim, bias=False)
self.w3 = nn.Linear(args.dim, args.hidden_dim, bias=False)
2023-12-13 04:48:15 +08:00
def __call__(self, x) -> mx.array:
return self.w2(nn.silu(self.w1(x)) * self.w3(x))
2023-12-13 04:48:15 +08:00
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.attention = Attention(args)
self.feed_forward = FeedForward(args=args)
self.attention_norm = nn.RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = nn.RMSNorm(args.dim, eps=args.norm_eps)
2023-12-13 04:48:15 +08:00
self.args = args
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r, cache = self.attention(self.attention_norm(x), mask, cache)
h = x + r
r = self.feed_forward(self.ffn_norm(h))
out = h + r
return out, cache
class Llama(nn.Module):
2023-12-13 04:48:15 +08:00
def __init__(self, args: ModelArgs):
super().__init__()
2023-12-13 04:48:15 +08:00
self.args = args
self.vocab_size = args.vocab_size
self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
self.layers = [TransformerBlock(args=args) for _ in range(args.n_layers)]
self.norm = nn.RMSNorm(args.dim, eps=args.norm_eps)
2023-12-13 04:48:15 +08:00
self.output = nn.Linear(args.dim, args.vocab_size, bias=False)
def __call__(self, x):
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
2023-12-13 04:48:15 +08:00
mask = mask.astype(self.tok_embeddings.weight.dtype)
2023-12-13 04:48:15 +08:00
x = self.tok_embeddings(x)
for l in self.layers:
x, _ = l(x, mask)
x = self.norm(x)
2023-12-13 04:48:15 +08:00
return self.output(x)
def generate(self, x, temp=1.0):
def sample(logits):
if temp == 0:
return mx.argmax(logits, axis=-1)
else:
return mx.random.categorical(logits * (1 / temp))
cache = []
# Make an additive causal mask. We will need that to process the prompt.
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
2023-12-13 04:48:15 +08:00
mask = mask.astype(self.tok_embeddings.weight.dtype)
# First we process the prompt x the same was as in __call__ but
# save the caches in cache
2023-12-13 04:48:15 +08:00
x = self.tok_embeddings(x)
for l in self.layers:
x, c = l(x, mask=mask)
# We store the per layer cache in a simple python list
cache.append(c)
x = self.norm(x)
# We only care about the last logits that generate the next token
2023-12-13 04:48:15 +08:00
y = self.output(x[:, -1])
y = sample(y)
# y now has size [1]
# Since MLX is lazily evaluated nothing is computed yet.
# Calling y.item() would force the computation to happen at
# this point but we can also choose not to do that and let the
# user choose when to start the computation.
yield y
# Now we parsed the prompt and generated the first token we
# need to feed it back into the model and loop to generate the
# rest.
while True:
# Unsqueezing the last dimension to add a sequence length
# dimension of 1
x = y[:, None]
2023-12-13 04:48:15 +08:00
x = self.tok_embeddings(x)
for i in range(len(cache)):
# We are overwriting the arrays in the cache list. When
# the computation will happen, MLX will be discarding the
# old cache the moment it is not needed anymore.
x, cache[i] = self.layers[i](x, mask=None, cache=cache[i])
x = self.norm(x)
y = sample(self.output(x[:, -1]))
yield y
def tic():
return time.time()
def toc(msg, start):
end = time.time()
return f"[INFO] {msg}: {end - start:.3f} s"
def generate(args):
input("Press enter to start generation")
print("------")
2023-12-18 23:47:55 +08:00
print(args.prompt)
x = mx.array([[tokenizer.bos_id()] + tokenizer.encode(args.prompt)])
skip = 0
prompt_processing = None
tokens = []
start = tic()
for token in model.generate(x, args.temp):
tokens.append(token)
if len(tokens) == 1:
# Actually perform the computation to measure the prompt processing time
mx.eval(token)
prompt_processing = toc("Prompt processing", start)
2023-12-18 23:47:55 +08:00
if len(tokens) >= args.max_tokens:
break
elif (len(tokens) % args.write_every) == 0:
# It is perfectly ok to eval things we have already eval-ed.
mx.eval(tokens)
s = tokenizer.decode([t.item() for t in tokens])
print(s[skip:], end="", flush=True)
skip = len(s)
mx.eval(tokens)
full_gen = toc("Full generation", start)
s = tokenizer.decode([t.item() for t in tokens])
2023-12-18 23:47:55 +08:00
print(s[skip:], flush=True)
print("------")
print(prompt_processing)
print(full_gen)
def few_shot_generate(args):
def possible_end(s):
word = "[Instruction]"
for i in range(len(word) - 1, 0, -1):
if s[-i:] == word[:i]:
return 0
if s[-len(word) :] == word:
return 1
return -1
def generate(question):
x = mx.array([[tokenizer.bos_id()] + tokenizer.encode(question)])
skip = 0
prompt_processing = None
tokens = []
start = tic()
for token in model.generate(x, args.temp):
tokens.append(token)
if len(tokens) == 1:
# Actually perform the computation to measure the prompt processing time
mx.eval(token)
prompt_processing = toc("Prompt processing", start)
2023-12-19 02:11:51 +08:00
if len(tokens) >= args.max_tokens:
break
mx.eval(tokens)
token_list = [t.item() for t in tokens]
s = tokenizer.decode(token_list)
end = possible_end(s)
if end == 0:
continue
if end == 1:
skip = len(s)
break
print(s[skip:], end="", flush=True)
skip = len(s)
if token_list[-1] == tokenizer.eos_id():
break
mx.eval(tokens)
full_gen = toc("Full generation", start)
s = tokenizer.decode([t.item() for t in tokens])
print(s[skip:], end="", flush=True)
print("[INFO] Loading few-shot examples from: {}".format(args.few_shot))
prompt = open(args.few_shot).read().strip()
while True:
question = input("Ask a question: ")
generate(prompt.replace("{}", question))
print()
def sanitize_config(config, weights):
config.pop("model_type", None)
n_heads = config["n_heads"]
if "n_kv_heads" not in config:
config["n_kv_heads"] = n_heads
if "head_dim" not in config:
config["head_dim"] = config["dim"] // n_heads
if "hidden_dim" not in config:
config["hidden_dim"] = weights["layers.0.feed_forward.w1.weight"].shape[0]
if config.get("vocab_size", -1) < 0:
config["vocab_size"] = weights["output.weight"].shape[-1]
if "rope_theta" not in config:
config["rope_theta"] = 10000
unused = ["multiple_of", "ffn_dim_multiplier"]
for k in unused:
config.pop(k, None)
return config
def load_model(model_path):
2023-12-13 04:48:15 +08:00
model_path = Path(model_path)
unsharded_weights_path = Path(model_path / "weights.npz")
if unsharded_weights_path.is_file():
print("[INFO] Loading model from {}.".format(unsharded_weights_path))
weights = mx.load(str(unsharded_weights_path))
else:
sharded_weights_glob = str(model_path / "weights.*.npz")
weight_files = glob.glob(sharded_weights_glob)
print("[INFO] Loading model from {}.".format(sharded_weights_glob))
if len(weight_files) == 0:
raise FileNotFoundError("No weights found in {}".format(model_path))
weights = {}
for wf in weight_files:
weights.update(mx.load(wf).items())
with open(model_path / "config.json", "r") as f:
config = sanitize_config(json.loads(f.read()), weights)
quantization = config.pop("quantization", None)
2023-12-13 04:48:15 +08:00
model = Llama(ModelArgs(**config))
if quantization is not None:
nn.quantize(model, **quantization)
model.update(tree_unflatten(list(weights.items())))
tokenizer = SentencePieceProcessor(model_file=str(model_path / "tokenizer.model"))
return model, tokenizer
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Llama inference script")
2023-12-13 04:48:15 +08:00
parser.add_argument(
"--model-path",
help="Path to the model weights and tokenizer",
default="mlx_model",
2023-12-13 04:48:15 +08:00
)
2023-12-18 23:47:55 +08:00
parser.add_argument(
"--prompt",
help="The message to be processed by the model. Ignored when --few-shot is provided.",
2023-12-18 23:47:55 +08:00
default="In the beginning the Universe was created.",
)
parser.add_argument(
"--few-shot",
help="Read a few shot prompt from a file (as in `sample_prompt.txt`).",
)
parser.add_argument(
2023-12-18 23:47:55 +08:00
"--max-tokens", "-m", type=int, default=100, help="How many tokens to generate"
)
parser.add_argument(
"--write-every", type=int, default=1, help="After how many tokens to detokenize"
)
parser.add_argument(
"--temp", type=float, default=0.0, help="The sampling temperature"
)
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
args = parser.parse_args()
mx.random.seed(args.seed)
model, tokenizer = load_model(args.model_path)
if args.few_shot:
few_shot_generate(args)
else:
generate(args)