2023-12-01 03:08:53 +08:00
|
|
|
# Copyright © 2023 Apple Inc.
|
|
|
|
|
2023-11-30 02:38:20 +08:00
|
|
|
import argparse
|
2024-01-04 07:13:26 +08:00
|
|
|
import glob
|
2023-12-13 04:48:15 +08:00
|
|
|
import json
|
2023-11-30 02:38:20 +08:00
|
|
|
import time
|
2023-12-21 02:22:25 +08:00
|
|
|
from dataclasses import dataclass
|
|
|
|
from pathlib import Path
|
2023-12-23 06:34:32 +08:00
|
|
|
from typing import Optional, Tuple
|
2023-11-30 02:38:20 +08:00
|
|
|
|
|
|
|
import mlx.core as mx
|
|
|
|
import mlx.nn as nn
|
|
|
|
from mlx.utils import tree_unflatten
|
2023-12-21 02:22:25 +08:00
|
|
|
from sentencepiece import SentencePieceProcessor
|
2023-11-30 02:38:20 +08:00
|
|
|
|
|
|
|
|
2023-12-13 04:48:15 +08:00
|
|
|
@dataclass
|
|
|
|
class ModelArgs:
|
|
|
|
dim: int
|
|
|
|
n_layers: int
|
|
|
|
head_dim: int
|
|
|
|
hidden_dim: int
|
|
|
|
n_heads: int
|
|
|
|
n_kv_heads: int
|
|
|
|
norm_eps: float
|
|
|
|
vocab_size: int
|
2023-12-16 11:51:51 +08:00
|
|
|
rope_theta: float
|
2023-12-18 23:47:55 +08:00
|
|
|
rope_traditional: bool = True
|
2023-12-13 04:48:15 +08:00
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.args = args
|
|
|
|
|
|
|
|
self.n_heads: int = args.n_heads
|
|
|
|
self.n_kv_heads: int = args.n_kv_heads
|
2023-11-30 02:38:20 +08:00
|
|
|
|
2023-12-13 04:48:15 +08:00
|
|
|
self.repeats = self.n_heads // self.n_kv_heads
|
2023-11-30 02:38:20 +08:00
|
|
|
|
2023-12-13 04:48:15 +08:00
|
|
|
self.scale = self.args.head_dim**-0.5
|
2023-11-30 02:38:20 +08:00
|
|
|
|
2023-12-13 04:48:15 +08:00
|
|
|
self.wq = nn.Linear(args.dim, args.n_heads * args.head_dim, bias=False)
|
|
|
|
self.wk = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
|
|
|
|
self.wv = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
|
|
|
|
self.wo = nn.Linear(args.n_heads * args.head_dim, args.dim, bias=False)
|
2023-12-23 06:10:25 +08:00
|
|
|
self.rope = nn.RoPE(
|
2023-12-18 23:47:55 +08:00
|
|
|
args.head_dim, traditional=args.rope_traditional, base=args.rope_theta
|
|
|
|
)
|
2023-11-30 02:38:20 +08:00
|
|
|
|
2023-12-13 04:48:15 +08:00
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
x: mx.array,
|
|
|
|
mask: Optional[mx.array] = None,
|
|
|
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
2023-12-27 01:32:43 +08:00
|
|
|
) -> Tuple[mx.array, Tuple[mx.array, mx.array]]:
|
2023-12-13 04:48:15 +08:00
|
|
|
B, L, D = x.shape
|
|
|
|
|
|
|
|
queries, keys, values = self.wq(x), self.wk(x), self.wv(x)
|
2023-11-30 02:38:20 +08:00
|
|
|
|
|
|
|
# Prepare the queries, keys and values for the attention computation
|
2023-12-13 04:48:15 +08:00
|
|
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
|
|
|
|
def repeat(a):
|
|
|
|
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
|
|
|
|
return a.reshape([B, self.n_heads, L, -1])
|
|
|
|
|
|
|
|
keys, values = map(repeat, (keys, values))
|
2023-11-30 02:38:20 +08:00
|
|
|
|
|
|
|
if cache is not None:
|
|
|
|
key_cache, value_cache = cache
|
|
|
|
queries = self.rope(queries, offset=key_cache.shape[2])
|
|
|
|
keys = self.rope(keys, offset=key_cache.shape[2])
|
|
|
|
keys = mx.concatenate([key_cache, keys], axis=2)
|
|
|
|
values = mx.concatenate([value_cache, values], axis=2)
|
|
|
|
else:
|
|
|
|
queries = self.rope(queries)
|
|
|
|
keys = self.rope(keys)
|
|
|
|
|
2023-12-13 04:48:15 +08:00
|
|
|
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
|
2023-11-30 02:38:20 +08:00
|
|
|
if mask is not None:
|
2023-12-13 04:48:15 +08:00
|
|
|
scores += mask
|
|
|
|
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
|
|
|
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
|
|
return self.wo(output), (keys, values)
|
2023-11-30 02:38:20 +08:00
|
|
|
|
|
|
|
|
2023-12-13 04:48:15 +08:00
|
|
|
class FeedForward(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
2023-11-30 02:38:20 +08:00
|
|
|
super().__init__()
|
|
|
|
|
2023-12-13 04:48:15 +08:00
|
|
|
self.w1 = nn.Linear(args.dim, args.hidden_dim, bias=False)
|
|
|
|
self.w2 = nn.Linear(args.hidden_dim, args.dim, bias=False)
|
|
|
|
self.w3 = nn.Linear(args.dim, args.hidden_dim, bias=False)
|
2023-11-30 02:38:20 +08:00
|
|
|
|
2023-12-13 04:48:15 +08:00
|
|
|
def __call__(self, x) -> mx.array:
|
|
|
|
return self.w2(nn.silu(self.w1(x)) * self.w3(x))
|
2023-11-30 02:38:20 +08:00
|
|
|
|
|
|
|
|
2023-12-13 04:48:15 +08:00
|
|
|
class TransformerBlock(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.n_heads = args.n_heads
|
|
|
|
self.dim = args.dim
|
|
|
|
self.attention = Attention(args)
|
|
|
|
self.feed_forward = FeedForward(args=args)
|
2024-03-23 22:13:51 +08:00
|
|
|
self.attention_norm = nn.RMSNorm(args.dim, eps=args.norm_eps)
|
|
|
|
self.ffn_norm = nn.RMSNorm(args.dim, eps=args.norm_eps)
|
2023-12-13 04:48:15 +08:00
|
|
|
self.args = args
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
x: mx.array,
|
|
|
|
mask: Optional[mx.array] = None,
|
|
|
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
|
|
) -> mx.array:
|
|
|
|
r, cache = self.attention(self.attention_norm(x), mask, cache)
|
|
|
|
h = x + r
|
|
|
|
r = self.feed_forward(self.ffn_norm(h))
|
|
|
|
out = h + r
|
|
|
|
return out, cache
|
2023-11-30 02:38:20 +08:00
|
|
|
|
|
|
|
|
|
|
|
class Llama(nn.Module):
|
2023-12-13 04:48:15 +08:00
|
|
|
def __init__(self, args: ModelArgs):
|
2023-11-30 02:38:20 +08:00
|
|
|
super().__init__()
|
2023-12-13 04:48:15 +08:00
|
|
|
self.args = args
|
|
|
|
self.vocab_size = args.vocab_size
|
|
|
|
self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
|
|
|
|
self.layers = [TransformerBlock(args=args) for _ in range(args.n_layers)]
|
2024-03-23 22:13:51 +08:00
|
|
|
self.norm = nn.RMSNorm(args.dim, eps=args.norm_eps)
|
2023-12-13 04:48:15 +08:00
|
|
|
self.output = nn.Linear(args.dim, args.vocab_size, bias=False)
|
2023-11-30 02:38:20 +08:00
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
2023-12-13 04:48:15 +08:00
|
|
|
mask = mask.astype(self.tok_embeddings.weight.dtype)
|
2023-11-30 02:38:20 +08:00
|
|
|
|
2023-12-13 04:48:15 +08:00
|
|
|
x = self.tok_embeddings(x)
|
2023-11-30 02:38:20 +08:00
|
|
|
for l in self.layers:
|
|
|
|
x, _ = l(x, mask)
|
|
|
|
x = self.norm(x)
|
2023-12-13 04:48:15 +08:00
|
|
|
return self.output(x)
|
2023-11-30 02:38:20 +08:00
|
|
|
|
|
|
|
def generate(self, x, temp=1.0):
|
2023-12-22 04:59:37 +08:00
|
|
|
def sample(logits):
|
|
|
|
if temp == 0:
|
|
|
|
return mx.argmax(logits, axis=-1)
|
|
|
|
else:
|
|
|
|
return mx.random.categorical(logits * (1 / temp))
|
|
|
|
|
2023-11-30 02:38:20 +08:00
|
|
|
cache = []
|
|
|
|
|
|
|
|
# Make an additive causal mask. We will need that to process the prompt.
|
|
|
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
2023-12-13 04:48:15 +08:00
|
|
|
mask = mask.astype(self.tok_embeddings.weight.dtype)
|
2023-11-30 02:38:20 +08:00
|
|
|
|
|
|
|
# First we process the prompt x the same was as in __call__ but
|
|
|
|
# save the caches in cache
|
2023-12-13 04:48:15 +08:00
|
|
|
x = self.tok_embeddings(x)
|
2023-11-30 02:38:20 +08:00
|
|
|
for l in self.layers:
|
|
|
|
x, c = l(x, mask=mask)
|
|
|
|
# We store the per layer cache in a simple python list
|
|
|
|
cache.append(c)
|
|
|
|
x = self.norm(x)
|
|
|
|
# We only care about the last logits that generate the next token
|
2023-12-13 04:48:15 +08:00
|
|
|
y = self.output(x[:, -1])
|
2023-12-22 04:59:37 +08:00
|
|
|
y = sample(y)
|
2023-11-30 02:38:20 +08:00
|
|
|
|
|
|
|
# y now has size [1]
|
|
|
|
# Since MLX is lazily evaluated nothing is computed yet.
|
|
|
|
# Calling y.item() would force the computation to happen at
|
|
|
|
# this point but we can also choose not to do that and let the
|
|
|
|
# user choose when to start the computation.
|
|
|
|
yield y
|
|
|
|
|
|
|
|
# Now we parsed the prompt and generated the first token we
|
|
|
|
# need to feed it back into the model and loop to generate the
|
|
|
|
# rest.
|
|
|
|
while True:
|
|
|
|
# Unsqueezing the last dimension to add a sequence length
|
|
|
|
# dimension of 1
|
|
|
|
x = y[:, None]
|
|
|
|
|
2023-12-13 04:48:15 +08:00
|
|
|
x = self.tok_embeddings(x)
|
2023-11-30 02:38:20 +08:00
|
|
|
for i in range(len(cache)):
|
|
|
|
# We are overwriting the arrays in the cache list. When
|
|
|
|
# the computation will happen, MLX will be discarding the
|
|
|
|
# old cache the moment it is not needed anymore.
|
|
|
|
x, cache[i] = self.layers[i](x, mask=None, cache=cache[i])
|
|
|
|
x = self.norm(x)
|
2023-12-22 04:59:37 +08:00
|
|
|
y = sample(self.output(x[:, -1]))
|
2023-11-30 02:38:20 +08:00
|
|
|
|
|
|
|
yield y
|
|
|
|
|
|
|
|
|
|
|
|
def tic():
|
|
|
|
return time.time()
|
|
|
|
|
|
|
|
|
|
|
|
def toc(msg, start):
|
|
|
|
end = time.time()
|
|
|
|
return f"[INFO] {msg}: {end - start:.3f} s"
|
|
|
|
|
|
|
|
|
|
|
|
def generate(args):
|
|
|
|
input("Press enter to start generation")
|
|
|
|
print("------")
|
2023-12-18 23:47:55 +08:00
|
|
|
print(args.prompt)
|
2023-11-30 02:38:20 +08:00
|
|
|
x = mx.array([[tokenizer.bos_id()] + tokenizer.encode(args.prompt)])
|
|
|
|
skip = 0
|
|
|
|
prompt_processing = None
|
|
|
|
tokens = []
|
|
|
|
start = tic()
|
|
|
|
for token in model.generate(x, args.temp):
|
|
|
|
tokens.append(token)
|
|
|
|
|
|
|
|
if len(tokens) == 1:
|
|
|
|
# Actually perform the computation to measure the prompt processing time
|
|
|
|
mx.eval(token)
|
|
|
|
prompt_processing = toc("Prompt processing", start)
|
|
|
|
|
2023-12-18 23:47:55 +08:00
|
|
|
if len(tokens) >= args.max_tokens:
|
2023-11-30 02:38:20 +08:00
|
|
|
break
|
|
|
|
|
|
|
|
elif (len(tokens) % args.write_every) == 0:
|
|
|
|
# It is perfectly ok to eval things we have already eval-ed.
|
|
|
|
mx.eval(tokens)
|
|
|
|
s = tokenizer.decode([t.item() for t in tokens])
|
|
|
|
print(s[skip:], end="", flush=True)
|
|
|
|
skip = len(s)
|
|
|
|
|
|
|
|
mx.eval(tokens)
|
|
|
|
full_gen = toc("Full generation", start)
|
|
|
|
s = tokenizer.decode([t.item() for t in tokens])
|
2023-12-18 23:47:55 +08:00
|
|
|
print(s[skip:], flush=True)
|
2023-11-30 02:38:20 +08:00
|
|
|
print("------")
|
|
|
|
print(prompt_processing)
|
|
|
|
print(full_gen)
|
|
|
|
|
|
|
|
|
|
|
|
def few_shot_generate(args):
|
|
|
|
def possible_end(s):
|
|
|
|
word = "[Instruction]"
|
|
|
|
for i in range(len(word) - 1, 0, -1):
|
|
|
|
if s[-i:] == word[:i]:
|
|
|
|
return 0
|
|
|
|
if s[-len(word) :] == word:
|
|
|
|
return 1
|
|
|
|
return -1
|
|
|
|
|
|
|
|
def generate(question):
|
|
|
|
x = mx.array([[tokenizer.bos_id()] + tokenizer.encode(question)])
|
|
|
|
skip = 0
|
|
|
|
prompt_processing = None
|
|
|
|
tokens = []
|
|
|
|
start = tic()
|
|
|
|
for token in model.generate(x, args.temp):
|
|
|
|
tokens.append(token)
|
|
|
|
|
|
|
|
if len(tokens) == 1:
|
|
|
|
# Actually perform the computation to measure the prompt processing time
|
|
|
|
mx.eval(token)
|
|
|
|
prompt_processing = toc("Prompt processing", start)
|
|
|
|
|
2023-12-19 02:11:51 +08:00
|
|
|
if len(tokens) >= args.max_tokens:
|
2023-11-30 02:38:20 +08:00
|
|
|
break
|
|
|
|
|
|
|
|
mx.eval(tokens)
|
|
|
|
token_list = [t.item() for t in tokens]
|
|
|
|
s = tokenizer.decode(token_list)
|
|
|
|
|
|
|
|
end = possible_end(s)
|
|
|
|
if end == 0:
|
|
|
|
continue
|
|
|
|
if end == 1:
|
|
|
|
skip = len(s)
|
|
|
|
break
|
|
|
|
|
|
|
|
print(s[skip:], end="", flush=True)
|
|
|
|
skip = len(s)
|
|
|
|
if token_list[-1] == tokenizer.eos_id():
|
|
|
|
break
|
|
|
|
|
|
|
|
mx.eval(tokens)
|
|
|
|
full_gen = toc("Full generation", start)
|
|
|
|
s = tokenizer.decode([t.item() for t in tokens])
|
|
|
|
print(s[skip:], end="", flush=True)
|
|
|
|
|
2023-12-19 05:30:04 +08:00
|
|
|
print("[INFO] Loading few-shot examples from: {}".format(args.few_shot))
|
|
|
|
prompt = open(args.few_shot).read().strip()
|
2023-11-30 02:38:20 +08:00
|
|
|
while True:
|
|
|
|
question = input("Ask a question: ")
|
|
|
|
generate(prompt.replace("{}", question))
|
|
|
|
print()
|
|
|
|
|
|
|
|
|
2023-12-22 04:59:37 +08:00
|
|
|
def sanitize_config(config, weights):
|
|
|
|
config.pop("model_type", None)
|
|
|
|
n_heads = config["n_heads"]
|
|
|
|
if "n_kv_heads" not in config:
|
|
|
|
config["n_kv_heads"] = n_heads
|
|
|
|
if "head_dim" not in config:
|
|
|
|
config["head_dim"] = config["dim"] // n_heads
|
|
|
|
if "hidden_dim" not in config:
|
|
|
|
config["hidden_dim"] = weights["layers.0.feed_forward.w1.weight"].shape[0]
|
|
|
|
if config.get("vocab_size", -1) < 0:
|
|
|
|
config["vocab_size"] = weights["output.weight"].shape[-1]
|
|
|
|
if "rope_theta" not in config:
|
|
|
|
config["rope_theta"] = 10000
|
|
|
|
unused = ["multiple_of", "ffn_dim_multiplier"]
|
|
|
|
for k in unused:
|
|
|
|
config.pop(k, None)
|
|
|
|
return config
|
|
|
|
|
|
|
|
|
2023-11-30 02:38:20 +08:00
|
|
|
def load_model(model_path):
|
2023-12-13 04:48:15 +08:00
|
|
|
model_path = Path(model_path)
|
2023-12-26 03:19:43 +08:00
|
|
|
|
|
|
|
unsharded_weights_path = Path(model_path / "weights.npz")
|
|
|
|
if unsharded_weights_path.is_file():
|
|
|
|
print("[INFO] Loading model from {}.".format(unsharded_weights_path))
|
|
|
|
weights = mx.load(str(unsharded_weights_path))
|
|
|
|
else:
|
|
|
|
sharded_weights_glob = str(model_path / "weights.*.npz")
|
|
|
|
weight_files = glob.glob(sharded_weights_glob)
|
|
|
|
print("[INFO] Loading model from {}.".format(sharded_weights_glob))
|
|
|
|
|
|
|
|
if len(weight_files) == 0:
|
|
|
|
raise FileNotFoundError("No weights found in {}".format(model_path))
|
|
|
|
|
|
|
|
weights = {}
|
|
|
|
for wf in weight_files:
|
|
|
|
weights.update(mx.load(wf).items())
|
|
|
|
|
2023-12-21 02:34:44 +08:00
|
|
|
with open(model_path / "config.json", "r") as f:
|
2023-12-22 04:59:37 +08:00
|
|
|
config = sanitize_config(json.loads(f.read()), weights)
|
|
|
|
quantization = config.pop("quantization", None)
|
2023-12-13 04:48:15 +08:00
|
|
|
model = Llama(ModelArgs(**config))
|
2023-12-22 04:59:37 +08:00
|
|
|
if quantization is not None:
|
2024-04-19 09:16:10 +08:00
|
|
|
nn.quantize(model, **quantization)
|
2023-11-30 02:38:20 +08:00
|
|
|
model.update(tree_unflatten(list(weights.items())))
|
2023-12-22 04:59:37 +08:00
|
|
|
tokenizer = SentencePieceProcessor(model_file=str(model_path / "tokenizer.model"))
|
|
|
|
return model, tokenizer
|
2023-11-30 02:38:20 +08:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(description="Llama inference script")
|
2023-12-13 04:48:15 +08:00
|
|
|
parser.add_argument(
|
2023-12-22 04:59:37 +08:00
|
|
|
"--model-path",
|
2023-12-23 06:34:32 +08:00
|
|
|
help="Path to the model weights and tokenizer",
|
2023-12-22 04:59:37 +08:00
|
|
|
default="mlx_model",
|
2023-12-13 04:48:15 +08:00
|
|
|
)
|
2023-12-18 23:47:55 +08:00
|
|
|
parser.add_argument(
|
|
|
|
"--prompt",
|
2023-12-19 05:30:04 +08:00
|
|
|
help="The message to be processed by the model. Ignored when --few-shot is provided.",
|
2023-12-18 23:47:55 +08:00
|
|
|
default="In the beginning the Universe was created.",
|
|
|
|
)
|
2023-11-30 02:38:20 +08:00
|
|
|
parser.add_argument(
|
|
|
|
"--few-shot",
|
|
|
|
help="Read a few shot prompt from a file (as in `sample_prompt.txt`).",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
2023-12-18 23:47:55 +08:00
|
|
|
"--max-tokens", "-m", type=int, default=100, help="How many tokens to generate"
|
2023-11-30 02:38:20 +08:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--write-every", type=int, default=1, help="After how many tokens to detokenize"
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
2023-12-22 04:59:37 +08:00
|
|
|
"--temp", type=float, default=0.0, help="The sampling temperature"
|
2023-11-30 02:38:20 +08:00
|
|
|
)
|
|
|
|
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
mx.random.seed(args.seed)
|
|
|
|
|
2023-12-22 04:59:37 +08:00
|
|
|
model, tokenizer = load_model(args.model_path)
|
2023-11-30 02:38:20 +08:00
|
|
|
if args.few_shot:
|
|
|
|
few_shot_generate(args)
|
|
|
|
else:
|
|
|
|
generate(args)
|