mlx-examples/llms/mistral/convert.py

99 lines
2.6 KiB
Python
Raw Permalink Normal View History

2023-12-06 03:02:52 +08:00
# Copyright © 2023 Apple Inc.
import argparse
import copy
import json
import shutil
2023-12-13 00:36:40 +08:00
from pathlib import Path
2023-12-06 03:02:52 +08:00
import mlx.core as mx
import mlx.nn as nn
import numpy as np
import torch
from mistral import Mistral, ModelArgs
from mlx.utils import tree_flatten, tree_map, tree_unflatten
def quantize(weights, config, args):
quantized_config = copy.deepcopy(config)
# Load the model:
config.pop("sliding_window", None)
model = Mistral(ModelArgs(**config))
weights = tree_map(mx.array, weights)
model.update(tree_unflatten(list(weights.items())))
# Quantize the model:
nn.quantize(model, args.q_group_size, args.q_bits)
# Update the config:
quantized_config["quantization"] = {
"group_size": args.q_group_size,
"bits": args.q_bits,
}
quantized_weights = dict(tree_flatten(model.parameters()))
return quantized_weights, quantized_config
2023-12-06 03:02:52 +08:00
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert Mistral weights to MLX.")
parser.add_argument(
"--torch-path",
2023-12-06 03:02:52 +08:00
type=str,
default="mistral-7B-v0.1",
help="The path to the PyTorch model.",
)
parser.add_argument(
"--mlx-path",
type=str,
default="mlx_model",
help="The path to save the MLX model.",
)
parser.add_argument(
"-q",
"--quantize",
help="Generate a quantized model.",
action="store_true",
)
parser.add_argument(
"--q-group-size",
help="Group size for quantization.",
type=int,
default=64,
)
parser.add_argument(
"--q-bits",
help="Bits per weight for quantization.",
type=int,
default=4,
2023-12-06 03:02:52 +08:00
)
args = parser.parse_args()
torch_path = Path(args.torch_path)
state = torch.load(str(torch_path / "consolidated.00.pth"))
mlx_path = Path(args.mlx_path)
mlx_path.mkdir(parents=True, exist_ok=True)
weights = {k: v.to(torch.float16).numpy() for k, v in state.items()}
with open(torch_path / "params.json", "r") as f:
config = json.loads(f.read())
if args.quantize:
print("[INFO] Quantizing")
weights, config = quantize(weights, config, args)
# Save weights
np.savez(str(mlx_path / "weights.npz"), **weights)
# Copy tokenizer
shutil.copyfile(
str(torch_path / "tokenizer.model"),
str(mlx_path / "tokenizer.model"),
2023-12-06 03:02:52 +08:00
)
# Save config.json with model_type
with open(mlx_path / "config.json", "w") as f:
config["model_type"] = "mistral"
json.dump(config, f, indent=4)