2023-12-06 03:02:52 +08:00
|
|
|
# Copyright © 2023 Apple Inc.
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
import json
|
2023-12-22 23:55:57 +08:00
|
|
|
import time
|
2023-12-21 02:22:25 +08:00
|
|
|
from dataclasses import dataclass
|
2023-12-06 03:02:52 +08:00
|
|
|
from pathlib import Path
|
2023-12-21 02:22:25 +08:00
|
|
|
from typing import List, Optional, Tuple
|
2023-12-06 03:02:52 +08:00
|
|
|
|
|
|
|
import mlx.core as mx
|
|
|
|
import mlx.nn as nn
|
2023-12-22 04:59:37 +08:00
|
|
|
from mlx.utils import tree_unflatten
|
2023-12-21 02:22:25 +08:00
|
|
|
from sentencepiece import SentencePieceProcessor
|
2023-12-06 03:02:52 +08:00
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class ModelArgs:
|
|
|
|
dim: int
|
|
|
|
n_layers: int
|
|
|
|
head_dim: int
|
|
|
|
hidden_dim: int
|
|
|
|
n_heads: int
|
|
|
|
n_kv_heads: int
|
|
|
|
norm_eps: float
|
|
|
|
vocab_size: int
|
2023-12-23 06:10:25 +08:00
|
|
|
rope_theta: float = 10000
|
2023-12-06 03:02:52 +08:00
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.args = args
|
|
|
|
|
|
|
|
self.n_heads: int = args.n_heads
|
|
|
|
self.n_kv_heads: int = args.n_kv_heads
|
|
|
|
|
|
|
|
self.repeats = self.n_heads // self.n_kv_heads
|
|
|
|
|
|
|
|
self.scale = self.args.head_dim**-0.5
|
|
|
|
|
|
|
|
self.wq = nn.Linear(args.dim, args.n_heads * args.head_dim, bias=False)
|
|
|
|
self.wk = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
|
|
|
|
self.wv = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
|
|
|
|
self.wo = nn.Linear(args.n_heads * args.head_dim, args.dim, bias=False)
|
2023-12-23 06:10:25 +08:00
|
|
|
self.rope = nn.RoPE(args.head_dim, traditional=True, base=args.rope_theta)
|
2023-12-06 03:02:52 +08:00
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
x: mx.array,
|
|
|
|
mask: Optional[mx.array] = None,
|
|
|
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
|
|
) -> mx.array:
|
|
|
|
B, L, D = x.shape
|
|
|
|
|
|
|
|
queries, keys, values = self.wq(x), self.wk(x), self.wv(x)
|
|
|
|
|
|
|
|
# Prepare the queries, keys and values for the attention computation
|
|
|
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
|
|
|
|
if cache is not None:
|
|
|
|
key_cache, value_cache = cache
|
|
|
|
queries = self.rope(queries, offset=key_cache.shape[2])
|
|
|
|
keys = self.rope(keys, offset=key_cache.shape[2])
|
|
|
|
keys = mx.concatenate([key_cache, keys], axis=2)
|
|
|
|
values = mx.concatenate([value_cache, values], axis=2)
|
|
|
|
else:
|
|
|
|
queries = self.rope(queries)
|
|
|
|
keys = self.rope(keys)
|
|
|
|
|
2024-03-23 22:13:51 +08:00
|
|
|
output = mx.fast.scaled_dot_product_attention(
|
|
|
|
queries, keys, values, scale=self.scale, mask=mask
|
|
|
|
)
|
|
|
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
2023-12-06 03:02:52 +08:00
|
|
|
return self.wo(output), (keys, values)
|
|
|
|
|
|
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.w1 = nn.Linear(args.dim, args.hidden_dim, bias=False)
|
|
|
|
self.w2 = nn.Linear(args.hidden_dim, args.dim, bias=False)
|
|
|
|
self.w3 = nn.Linear(args.dim, args.hidden_dim, bias=False)
|
|
|
|
|
|
|
|
def __call__(self, x) -> mx.array:
|
|
|
|
return self.w2(nn.silu(self.w1(x)) * self.w3(x))
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.n_heads = args.n_heads
|
|
|
|
self.dim = args.dim
|
|
|
|
self.attention = Attention(args)
|
|
|
|
self.feed_forward = FeedForward(args=args)
|
2024-03-23 22:13:51 +08:00
|
|
|
self.attention_norm = nn.RMSNorm(args.dim, eps=args.norm_eps)
|
|
|
|
self.ffn_norm = nn.RMSNorm(args.dim, eps=args.norm_eps)
|
2023-12-06 03:02:52 +08:00
|
|
|
self.args = args
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
x: mx.array,
|
|
|
|
mask: Optional[mx.array] = None,
|
|
|
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
|
|
) -> mx.array:
|
|
|
|
r, cache = self.attention(self.attention_norm(x), mask, cache)
|
|
|
|
h = x + r
|
|
|
|
r = self.feed_forward(self.ffn_norm(h))
|
|
|
|
out = h + r
|
|
|
|
return out, cache
|
|
|
|
|
|
|
|
|
|
|
|
class Mistral(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.args = args
|
|
|
|
self.vocab_size = args.vocab_size
|
|
|
|
self.n_layers = args.n_layers
|
|
|
|
assert self.vocab_size > 0
|
|
|
|
self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
|
|
|
|
self.layers = [TransformerBlock(args=args) for _ in range(args.n_layers)]
|
2024-03-23 22:13:51 +08:00
|
|
|
self.norm = nn.RMSNorm(args.dim, eps=args.norm_eps)
|
2023-12-06 03:02:52 +08:00
|
|
|
self.output = nn.Linear(args.dim, args.vocab_size, bias=False)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
inputs: mx.array,
|
|
|
|
cache=None,
|
|
|
|
):
|
|
|
|
h = self.tok_embeddings(inputs)
|
|
|
|
|
|
|
|
mask = None
|
|
|
|
if h.shape[1] > 1:
|
|
|
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
|
|
|
mask = mask.astype(h.dtype)
|
|
|
|
|
|
|
|
if cache is None:
|
|
|
|
cache = [None] * len(self.layers)
|
|
|
|
|
|
|
|
for e, layer in enumerate(self.layers):
|
|
|
|
h, cache[e] = layer(h, mask, cache[e])
|
|
|
|
|
|
|
|
return self.output(self.norm(h)), cache
|
|
|
|
|
|
|
|
|
|
|
|
class Tokenizer:
|
|
|
|
def __init__(self, model_path: str):
|
|
|
|
assert Path(model_path).exists(), model_path
|
|
|
|
self._model = SentencePieceProcessor(model_file=model_path)
|
|
|
|
self._sep = "▁"
|
|
|
|
assert self._model.vocab_size() == self._model.get_piece_size()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def eos_id(self) -> int:
|
|
|
|
return self._model.eos_id()
|
|
|
|
|
|
|
|
@property
|
|
|
|
def pad_id(self) -> int:
|
|
|
|
return self._model.pad_id()
|
|
|
|
|
|
|
|
def encode(self, s: str) -> List[int]:
|
|
|
|
return [self._model.bos_id(), *self._model.encode(s)]
|
|
|
|
|
|
|
|
def decode(self, t: List[int]) -> str:
|
|
|
|
out = self._model.decode(t)
|
|
|
|
if t and self._model.id_to_piece(t[0])[0] == self._sep:
|
|
|
|
return " " + out
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
2023-12-22 04:59:37 +08:00
|
|
|
def load_model(folder: str):
|
2023-12-06 03:02:52 +08:00
|
|
|
model_path = Path(folder)
|
|
|
|
tokenizer = Tokenizer(str(model_path / "tokenizer.model"))
|
2023-12-21 00:39:37 +08:00
|
|
|
with open(model_path / "config.json", "r") as f:
|
2023-12-06 03:02:52 +08:00
|
|
|
config = json.loads(f.read())
|
2023-12-21 00:39:37 +08:00
|
|
|
config.pop("sliding_window", None)
|
|
|
|
config.pop("model_type", None)
|
2023-12-22 04:59:37 +08:00
|
|
|
quantization = config.pop("quantization", None)
|
2023-12-06 03:02:52 +08:00
|
|
|
model_args = ModelArgs(**config)
|
2023-12-13 00:36:40 +08:00
|
|
|
weights = mx.load(str(model_path / "weights.npz"))
|
2023-12-06 03:02:52 +08:00
|
|
|
weights = tree_unflatten(list(weights.items()))
|
|
|
|
model = Mistral(model_args)
|
2023-12-22 04:59:37 +08:00
|
|
|
if quantization is not None:
|
2024-04-19 09:16:10 +08:00
|
|
|
nn.quantize(model, **quantization)
|
2023-12-06 03:02:52 +08:00
|
|
|
model.update(weights)
|
2023-12-22 23:55:57 +08:00
|
|
|
mx.eval(model.parameters())
|
2023-12-06 03:02:52 +08:00
|
|
|
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
def generate(prompt: mx.array, model: Mistral, temp: Optional[float] = 0.0):
|
|
|
|
def sample(logits):
|
|
|
|
if temp == 0:
|
|
|
|
return mx.argmax(logits, axis=-1)
|
|
|
|
else:
|
|
|
|
return mx.random.categorical(logits * (1 / temp))
|
|
|
|
|
|
|
|
logits, cache = model(prompt[None])
|
|
|
|
y = sample(logits[:, -1, :])
|
|
|
|
yield y
|
|
|
|
|
|
|
|
while True:
|
|
|
|
logits, cache = model(y[:, None], cache)
|
|
|
|
y = sample(logits.squeeze(1))
|
|
|
|
yield y
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(description="Mistral inference script")
|
|
|
|
parser.add_argument(
|
2023-12-21 22:28:57 +08:00
|
|
|
"--model-path",
|
2023-12-06 03:02:52 +08:00
|
|
|
type=str,
|
2023-12-22 04:59:37 +08:00
|
|
|
default="mlx_model",
|
2023-12-06 03:02:52 +08:00
|
|
|
help="The path to the model weights and tokenizer",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--prompt",
|
|
|
|
help="The message to be processed by the model",
|
|
|
|
default="In the beginning the Universe was created.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
2023-12-22 04:59:37 +08:00
|
|
|
"--max-tokens",
|
2023-12-06 03:02:52 +08:00
|
|
|
"-m",
|
|
|
|
type=int,
|
|
|
|
default=100,
|
|
|
|
help="Maximum number of tokens to generate",
|
|
|
|
)
|
2023-12-06 03:24:30 +08:00
|
|
|
parser.add_argument(
|
|
|
|
"--temp",
|
|
|
|
help="The sampling temperature.",
|
|
|
|
type=float,
|
2023-12-22 04:59:37 +08:00
|
|
|
default=0.0,
|
2023-12-06 03:24:30 +08:00
|
|
|
)
|
2023-12-10 02:43:44 +08:00
|
|
|
parser.add_argument(
|
2024-01-03 00:18:12 +08:00
|
|
|
"--tokens-per-eval",
|
2023-12-10 02:43:44 +08:00
|
|
|
help="The batch size of tokens to generate.",
|
|
|
|
type=int,
|
|
|
|
default=10,
|
|
|
|
)
|
2023-12-06 03:02:52 +08:00
|
|
|
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
|
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
mx.random.seed(args.seed)
|
|
|
|
print("[INFO] Loading model from disk.")
|
|
|
|
model, tokenizer = load_model(args.model_path)
|
|
|
|
|
|
|
|
print("[INFO] Starting generation...")
|
2023-12-22 23:55:57 +08:00
|
|
|
tic = time.time()
|
2023-12-06 03:02:52 +08:00
|
|
|
print(args.prompt, end="", flush=True)
|
|
|
|
prompt = mx.array(tokenizer.encode(args.prompt))
|
|
|
|
tokens = []
|
2023-12-22 23:55:57 +08:00
|
|
|
for token, ntoks in zip(generate(prompt, model, args.temp), range(args.max_tokens)):
|
2023-12-06 03:02:52 +08:00
|
|
|
tokens.append(token)
|
2023-12-22 23:55:57 +08:00
|
|
|
if ntoks == 0:
|
|
|
|
mx.eval(tokens)
|
2023-12-23 06:10:25 +08:00
|
|
|
toc = time.time()
|
2023-12-22 23:55:57 +08:00
|
|
|
prompt_tps = prompt.size / (toc - tic)
|
|
|
|
tic = time.time()
|
2023-12-06 03:02:52 +08:00
|
|
|
|
2023-12-10 02:43:44 +08:00
|
|
|
if (len(tokens) % args.tokens_per_eval) == 0:
|
2023-12-06 03:02:52 +08:00
|
|
|
mx.eval(tokens)
|
|
|
|
s = tokenizer.decode([t.item() for t in tokens])
|
|
|
|
print(s, end="", flush=True)
|
|
|
|
tokens = []
|
|
|
|
|
|
|
|
mx.eval(tokens)
|
|
|
|
s = tokenizer.decode([t.item() for t in tokens])
|
|
|
|
print(s, flush=True)
|
|
|
|
print("------")
|
2023-12-22 23:55:57 +08:00
|
|
|
generation_tps = ntoks / (time.time() - tic)
|
|
|
|
print(
|
|
|
|
f"Tokens per second: prompt {prompt_tps:.3f}, "
|
|
|
|
f"generation {generation_tps:.3f}"
|
|
|
|
)
|