mlx-examples/llms/mistral/mistral.py

277 lines
8.4 KiB
Python
Raw Permalink Normal View History

2023-12-06 03:02:52 +08:00
# Copyright © 2023 Apple Inc.
import argparse
import json
import time
from dataclasses import dataclass
2023-12-06 03:02:52 +08:00
from pathlib import Path
from typing import List, Optional, Tuple
2023-12-06 03:02:52 +08:00
import mlx.core as mx
import mlx.nn as nn
from mlx.utils import tree_unflatten
from sentencepiece import SentencePieceProcessor
2023-12-06 03:02:52 +08:00
@dataclass
class ModelArgs:
dim: int
n_layers: int
head_dim: int
hidden_dim: int
n_heads: int
n_kv_heads: int
norm_eps: float
vocab_size: int
rope_theta: float = 10000
2023-12-06 03:02:52 +08:00
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.n_heads: int = args.n_heads
self.n_kv_heads: int = args.n_kv_heads
self.repeats = self.n_heads // self.n_kv_heads
self.scale = self.args.head_dim**-0.5
self.wq = nn.Linear(args.dim, args.n_heads * args.head_dim, bias=False)
self.wk = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
self.wv = nn.Linear(args.dim, args.n_kv_heads * args.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * args.head_dim, args.dim, bias=False)
self.rope = nn.RoPE(args.head_dim, traditional=True, base=args.rope_theta)
2023-12-06 03:02:52 +08:00
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = self.wq(x), self.wk(x), self.wv(x)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
2023-12-06 03:02:52 +08:00
return self.wo(output), (keys, values)
class FeedForward(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.w1 = nn.Linear(args.dim, args.hidden_dim, bias=False)
self.w2 = nn.Linear(args.hidden_dim, args.dim, bias=False)
self.w3 = nn.Linear(args.dim, args.hidden_dim, bias=False)
def __call__(self, x) -> mx.array:
return self.w2(nn.silu(self.w1(x)) * self.w3(x))
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.attention = Attention(args)
self.feed_forward = FeedForward(args=args)
self.attention_norm = nn.RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = nn.RMSNorm(args.dim, eps=args.norm_eps)
2023-12-06 03:02:52 +08:00
self.args = args
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r, cache = self.attention(self.attention_norm(x), mask, cache)
h = x + r
r = self.feed_forward(self.ffn_norm(h))
out = h + r
return out, cache
class Mistral(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.n_layers = args.n_layers
assert self.vocab_size > 0
self.tok_embeddings = nn.Embedding(args.vocab_size, args.dim)
self.layers = [TransformerBlock(args=args) for _ in range(args.n_layers)]
self.norm = nn.RMSNorm(args.dim, eps=args.norm_eps)
2023-12-06 03:02:52 +08:00
self.output = nn.Linear(args.dim, args.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.tok_embeddings(inputs)
mask = None
if h.shape[1] > 1:
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
mask = mask.astype(h.dtype)
if cache is None:
cache = [None] * len(self.layers)
for e, layer in enumerate(self.layers):
h, cache[e] = layer(h, mask, cache[e])
return self.output(self.norm(h)), cache
class Tokenizer:
def __init__(self, model_path: str):
assert Path(model_path).exists(), model_path
self._model = SentencePieceProcessor(model_file=model_path)
self._sep = ""
assert self._model.vocab_size() == self._model.get_piece_size()
@property
def eos_id(self) -> int:
return self._model.eos_id()
@property
def pad_id(self) -> int:
return self._model.pad_id()
def encode(self, s: str) -> List[int]:
return [self._model.bos_id(), *self._model.encode(s)]
def decode(self, t: List[int]) -> str:
out = self._model.decode(t)
if t and self._model.id_to_piece(t[0])[0] == self._sep:
return " " + out
return out
def load_model(folder: str):
2023-12-06 03:02:52 +08:00
model_path = Path(folder)
tokenizer = Tokenizer(str(model_path / "tokenizer.model"))
with open(model_path / "config.json", "r") as f:
2023-12-06 03:02:52 +08:00
config = json.loads(f.read())
config.pop("sliding_window", None)
config.pop("model_type", None)
quantization = config.pop("quantization", None)
2023-12-06 03:02:52 +08:00
model_args = ModelArgs(**config)
2023-12-13 00:36:40 +08:00
weights = mx.load(str(model_path / "weights.npz"))
2023-12-06 03:02:52 +08:00
weights = tree_unflatten(list(weights.items()))
model = Mistral(model_args)
if quantization is not None:
nn.quantize(model, **quantization)
2023-12-06 03:02:52 +08:00
model.update(weights)
mx.eval(model.parameters())
2023-12-06 03:02:52 +08:00
return model, tokenizer
def generate(prompt: mx.array, model: Mistral, temp: Optional[float] = 0.0):
def sample(logits):
if temp == 0:
return mx.argmax(logits, axis=-1)
else:
return mx.random.categorical(logits * (1 / temp))
logits, cache = model(prompt[None])
y = sample(logits[:, -1, :])
yield y
while True:
logits, cache = model(y[:, None], cache)
y = sample(logits.squeeze(1))
yield y
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Mistral inference script")
parser.add_argument(
"--model-path",
2023-12-06 03:02:52 +08:00
type=str,
default="mlx_model",
2023-12-06 03:02:52 +08:00
help="The path to the model weights and tokenizer",
)
parser.add_argument(
"--prompt",
help="The message to be processed by the model",
default="In the beginning the Universe was created.",
)
parser.add_argument(
"--max-tokens",
2023-12-06 03:02:52 +08:00
"-m",
type=int,
default=100,
help="Maximum number of tokens to generate",
)
2023-12-06 03:24:30 +08:00
parser.add_argument(
"--temp",
help="The sampling temperature.",
type=float,
default=0.0,
2023-12-06 03:24:30 +08:00
)
parser.add_argument(
"--tokens-per-eval",
help="The batch size of tokens to generate.",
type=int,
default=10,
)
2023-12-06 03:02:52 +08:00
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
args = parser.parse_args()
mx.random.seed(args.seed)
print("[INFO] Loading model from disk.")
model, tokenizer = load_model(args.model_path)
print("[INFO] Starting generation...")
tic = time.time()
2023-12-06 03:02:52 +08:00
print(args.prompt, end="", flush=True)
prompt = mx.array(tokenizer.encode(args.prompt))
tokens = []
for token, ntoks in zip(generate(prompt, model, args.temp), range(args.max_tokens)):
2023-12-06 03:02:52 +08:00
tokens.append(token)
if ntoks == 0:
mx.eval(tokens)
toc = time.time()
prompt_tps = prompt.size / (toc - tic)
tic = time.time()
2023-12-06 03:02:52 +08:00
if (len(tokens) % args.tokens_per_eval) == 0:
2023-12-06 03:02:52 +08:00
mx.eval(tokens)
s = tokenizer.decode([t.item() for t in tokens])
print(s, end="", flush=True)
tokens = []
mx.eval(tokens)
s = tokenizer.decode([t.item() for t in tokens])
print(s, flush=True)
print("------")
generation_tps = ntoks / (time.time() - tic)
print(
f"Tokens per second: prompt {prompt_tps:.3f}, "
f"generation {generation_tps:.3f}"
)