mlx-examples/musicgen/musicgen.py

359 lines
13 KiB
Python
Raw Permalink Normal View History

# Copyright © 2024 Apple Inc.
import json
from functools import partial
from pathlib import Path
from types import SimpleNamespace
from typing import Optional
import mlx.core as mx
import mlx.nn as nn
from tqdm import tqdm
from encodec import EncodecModel
from t5 import T5
class TextConditioner(nn.Module):
def __init__(self, t5_name, input_dim, output_dim):
super().__init__()
self._t5, self.tokenizer = T5.from_pretrained(t5_name)
self.output_proj = nn.Linear(input_dim, output_dim)
def __call__(self, text):
x = self.tokenizer.encode(text)
x = self._t5.encode(x)
return self.output_proj(x)
class KVCache:
def __init__(self, head_dim, n_kv_heads):
self.n_kv_heads = n_kv_heads
if isinstance(head_dim, int):
self.k_head_dim = self.v_head_dim = head_dim
elif isinstance(head_dim, tuple) and len(head_dim) == 2:
self.k_head_dim, self.v_head_dim = head_dim
else:
raise ValueError("head_dim must be an int or a tuple of two ints")
self.keys = None
self.values = None
self.offset = 0
self.step = 256
def update_and_fetch(self, keys, values):
prev = self.offset
if self.keys is None or (prev + keys.shape[2]) > self.keys.shape[2]:
B = keys.shape[0]
n_steps = (self.step + keys.shape[2] - 1) // self.step
k_shape = (B, self.n_kv_heads, n_steps * self.step, self.k_head_dim)
v_shape = (B, self.n_kv_heads, n_steps * self.step, self.v_head_dim)
new_k = mx.zeros(k_shape, keys.dtype)
new_v = mx.zeros(v_shape, values.dtype)
if self.keys is not None:
if prev % self.step != 0:
self.keys = self.keys[..., :prev, :]
self.values = self.values[..., :prev, :]
self.keys = mx.concatenate([self.keys, new_k], axis=2)
self.values = mx.concatenate([self.values, new_v], axis=2)
else:
self.keys, self.values = new_k, new_v
self.offset += keys.shape[2]
self.keys[..., prev : self.offset, :] = keys
self.values[..., prev : self.offset, :] = values
return self.keys[..., : self.offset, :], self.values[..., : self.offset, :]
@property
def state(self):
return self.keys, self.values
class MultiHeadAttention(nn.Module):
def __init__(self, dim, n_heads):
super().__init__()
self.n_heads = n_heads
head_dim = dim // n_heads
self.scale = head_dim**-0.5
self.q_proj = nn.Linear(dim, dim, bias=False)
self.k_proj = nn.Linear(dim, dim, bias=False)
self.v_proj = nn.Linear(dim, dim, bias=False)
self.out_proj = nn.Linear(dim, dim, bias=False)
def __call__(
self,
queries: mx.array,
keys: mx.array,
values: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[KVCache] = None,
) -> mx.array:
B, L_q, D = queries.shape
L_k = keys.shape[1]
queries, keys, values = (
self.q_proj(queries),
self.k_proj(keys),
self.v_proj(values),
)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L_q, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L_k, self.n_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L_k, self.n_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
keys, values = cache.update_and_fetch(keys, values)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L_q, -1)
return self.out_proj(output)
class TransformerBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.num_attention_heads = config.decoder.num_attention_heads
self.hidden_size = config.decoder.hidden_size
self.self_attn = MultiHeadAttention(self.hidden_size, self.num_attention_heads)
self.cross_attn = MultiHeadAttention(self.hidden_size, self.num_attention_heads)
self.linear1 = nn.Linear(self.hidden_size, config.decoder.ffn_dim, bias=False)
self.linear2 = nn.Linear(config.decoder.ffn_dim, self.hidden_size, bias=False)
self.norm1 = nn.LayerNorm(self.hidden_size, eps=1e-5)
self.norm_cross = nn.LayerNorm(self.hidden_size, eps=1e-5)
self.norm2 = nn.LayerNorm(self.hidden_size, eps=1e-5)
def __call__(
self,
x: mx.array,
conditioning: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[KVCache] = None,
) -> mx.array:
xn = self.norm1(x)
x += self.self_attn(xn, xn, xn, mask, cache)
xn = self.norm_cross(x)
x += self.cross_attn(xn, conditioning, conditioning, mask)
xn = self.norm2(x)
x += self.linear2(nn.gelu(self.linear1(xn)))
return x
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
def top_k_sampling(
logits: mx.array, top_k: float, temperature: float, axis: int = -1
) -> mx.array:
"""
Apply top-k sampling to logits.
Args:
logits: The logits from the model's output.
top_k: Sample from the top k logits.
temperature: Temperature parameter for softmax distribution reshaping.
axis: Axis along which to sample.
Returns:
token selected based on the top-k criterion.
"""
# referenced implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L449-L460
probs = mx.softmax(logits * (1 / temperature), axis=axis)
# sort probs in ascending order
sorted_indices = mx.argsort(probs, axis=axis)
sorted_probs = mx.take_along_axis(probs, sorted_indices, axis=axis)
prob_threshold = mx.take(sorted_probs, mx.array(-top_k), axis=axis)
# select the top K tokens in probability
top_probs = mx.where(
sorted_probs > prob_threshold,
sorted_probs,
0,
)
sorted_token = mx.random.categorical(mx.log(top_probs), axis=axis)
token = mx.take_along_axis(
sorted_indices, mx.expand_dims(sorted_token, axis), axis=axis
)
return token
def create_sin_embedding(positions: mx.array, dim: int, max_period: float = 10000):
assert dim % 2 == 0
half_dim = dim // 2
adim = mx.arange(half_dim).reshape(1, 1, -1)
phase = positions / (max_period ** (adim / (half_dim - 1)))
return mx.concatenate([mx.cos(phase), mx.sin(phase)], axis=-1)
class MusicGen(nn.Module):
def __init__(self, config):
self.num_codebooks = config.decoder.num_codebooks
self.codebook_size = config.audio_encoder.codebook_size
self.bos_token_id = config.decoder.bos_token_id
self.hidden_size = config.decoder.hidden_size
self.num_attention_heads = config.decoder.num_attention_heads
self.sampling_rate = config.audio_encoder.sampling_rate
self.text_conditioner = TextConditioner(
config.text_encoder._name_or_path,
config.text_encoder.d_model,
self.hidden_size,
)
self.emb = [
nn.Embedding(self.codebook_size + 1, self.hidden_size)
for _ in range(self.num_codebooks)
]
self.layers = [
TransformerBlock(config) for _ in range(config.decoder.num_hidden_layers)
]
self.out_norm = nn.LayerNorm(self.hidden_size, eps=1e-5)
self.linears = [
nn.Linear(self.hidden_size, self.codebook_size, bias=False)
for _ in range(self.num_codebooks)
]
encodec_name = config.audio_encoder._name_or_path.split("/")[-1]
encodec_name = encodec_name.replace("_", "-")
self._audio_decoder, _ = EncodecModel.from_pretrained(
f"mlx-community/{encodec_name}-float32"
)
def __call__(
self,
audio_tokens: mx.array,
conditioning: mx.array,
cache: list[KVCache] = None,
):
if cache is None:
cache = [None] * len(self.layers)
x = sum([self.emb[k](audio_tokens[..., k]) for k in range(self.num_codebooks)])
offset = cache[0].offset if cache[0] is not None else 0
pos_emb = create_sin_embedding(offset, self.hidden_size)
x += pos_emb.astype(x.dtype)
for layer, c in zip(self.layers, cache):
x = layer(x, conditioning, cache=c)
x = self.out_norm(x)
x = mx.stack([self.linears[k](x) for k in range(self.num_codebooks)], axis=-1)
return x
def generate(
self,
text: str,
max_steps: int = 200,
top_k: int = 250,
temp: float = 1.0,
guidance_coef: float = 3.0,
) -> mx.array:
"""
Generates a waveform conditioned on `text`.
Args:
text (str): The text to condition generation on.
max_steps (int): Max steps to generate.
top_k (int): Top k used in sampling.
temp (float): Sampling softmax temperature.
guidance_coef (float): Classifier free guidance coefficent.
Used to combine conditional and unconditional logits.
Returns:
An mx.array of audio samples of shape ``(num_samples,)``.
"""
# Assuming no audio prompt we start with all bos token for the codebooks
audio_shape = (1, max_steps + 1, self.num_codebooks)
audio_seq = mx.full(audio_shape, self.bos_token_id)
text_tokens = self.text_conditioner(text)
# Compute conditional and unconditional logits in one batch
text_tokens = mx.concatenate([text_tokens, mx.zeros_like(text_tokens)], axis=0)
head_dim = self.hidden_size // self.num_attention_heads
cache = [
KVCache(head_dim, self.num_attention_heads) for _ in range(len(self.layers))
]
for offset in tqdm(range(max_steps)):
audio_input = mx.tile(audio_seq[:, offset : offset + 1], [2, 1, 1])
audio_logits = self(audio_input, text_tokens, cache)
cond_logits, uncond_logits = audio_logits[:1], audio_logits[1:2]
audio_logits = uncond_logits + (cond_logits - uncond_logits) * guidance_coef
audio_tokens = top_k_sampling(audio_logits, top_k, temp, axis=-2)
# "delay" pattern
audio_tokens[..., offset + 1 :] = self.bos_token_id
audio_tokens[..., : -max_steps + offset] = self.bos_token_id
audio_seq[:, offset + 1 : offset + 2] = audio_tokens
mx.eval(audio_seq)
# Undo delay
for i in range(self.num_codebooks):
audio_seq[:, : -self.num_codebooks, i] = audio_seq[
:, i : -self.num_codebooks + i, i
]
audio_seq = audio_seq[:, 1 : -self.num_codebooks + 1]
audio_seq = mx.swapaxes(audio_seq, -1, -2)[:, mx.newaxis]
audio = self._audio_decoder.decode(audio_seq, audio_scales=[None])
return audio[0]
@classmethod
def sanitize(cls, weights):
out_weights = {}
for k, arr in weights.items():
if k.startswith("transformer."):
k = k[len("transformer.") :]
if "cross_attention" in k:
k = k.replace("cross_attention", "cross_attn")
if "condition_provider" in k:
k = k.replace(
"condition_provider.conditioners.description", "text_conditioner"
)
if "in_proj_weight" in k:
dim = arr.shape[0] // 3
name = "in_proj_weight"
out_weights[k.replace(name, "q_proj.weight")] = arr[:dim]
out_weights[k.replace(name, "k_proj.weight")] = arr[dim : dim * 2]
out_weights[k.replace(name, "v_proj.weight")] = arr[dim * 2 :]
continue
out_weights[k] = arr
return out_weights
@classmethod
def from_pretrained(cls, path_or_repo: str):
import torch
from huggingface_hub import snapshot_download
path = Path(path_or_repo)
if not path.exists():
path = Path(
snapshot_download(
repo_id=path_or_repo,
allow_patterns=["*.json", "state_dict.bin"],
)
)
with open(path / "config.json", "r") as f:
config = SimpleNamespace(**json.load(f))
config.text_encoder = SimpleNamespace(**config.text_encoder)
config.audio_encoder = SimpleNamespace(**config.audio_encoder)
config.decoder = SimpleNamespace(**config.decoder)
weights = torch.load(path / "state_dict.bin", weights_only=True)["best_state"]
weights = {k: mx.array(v) for k, v in weights.items()}
weights = cls.sanitize(weights)
model = MusicGen(config)
model.load_weights(list(weights.items()))
return model