mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00
359 lines
13 KiB
Python
359 lines
13 KiB
Python
![]() |
# Copyright © 2024 Apple Inc.
|
||
|
|
||
|
import json
|
||
|
from functools import partial
|
||
|
from pathlib import Path
|
||
|
from types import SimpleNamespace
|
||
|
from typing import Optional
|
||
|
|
||
|
import mlx.core as mx
|
||
|
import mlx.nn as nn
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
from encodec import EncodecModel
|
||
|
from t5 import T5
|
||
|
|
||
|
|
||
|
class TextConditioner(nn.Module):
|
||
|
def __init__(self, t5_name, input_dim, output_dim):
|
||
|
super().__init__()
|
||
|
self._t5, self.tokenizer = T5.from_pretrained(t5_name)
|
||
|
self.output_proj = nn.Linear(input_dim, output_dim)
|
||
|
|
||
|
def __call__(self, text):
|
||
|
x = self.tokenizer.encode(text)
|
||
|
x = self._t5.encode(x)
|
||
|
return self.output_proj(x)
|
||
|
|
||
|
|
||
|
class KVCache:
|
||
|
def __init__(self, head_dim, n_kv_heads):
|
||
|
self.n_kv_heads = n_kv_heads
|
||
|
if isinstance(head_dim, int):
|
||
|
self.k_head_dim = self.v_head_dim = head_dim
|
||
|
elif isinstance(head_dim, tuple) and len(head_dim) == 2:
|
||
|
self.k_head_dim, self.v_head_dim = head_dim
|
||
|
else:
|
||
|
raise ValueError("head_dim must be an int or a tuple of two ints")
|
||
|
self.keys = None
|
||
|
self.values = None
|
||
|
self.offset = 0
|
||
|
self.step = 256
|
||
|
|
||
|
def update_and_fetch(self, keys, values):
|
||
|
prev = self.offset
|
||
|
if self.keys is None or (prev + keys.shape[2]) > self.keys.shape[2]:
|
||
|
B = keys.shape[0]
|
||
|
n_steps = (self.step + keys.shape[2] - 1) // self.step
|
||
|
k_shape = (B, self.n_kv_heads, n_steps * self.step, self.k_head_dim)
|
||
|
v_shape = (B, self.n_kv_heads, n_steps * self.step, self.v_head_dim)
|
||
|
new_k = mx.zeros(k_shape, keys.dtype)
|
||
|
new_v = mx.zeros(v_shape, values.dtype)
|
||
|
if self.keys is not None:
|
||
|
if prev % self.step != 0:
|
||
|
self.keys = self.keys[..., :prev, :]
|
||
|
self.values = self.values[..., :prev, :]
|
||
|
self.keys = mx.concatenate([self.keys, new_k], axis=2)
|
||
|
self.values = mx.concatenate([self.values, new_v], axis=2)
|
||
|
else:
|
||
|
self.keys, self.values = new_k, new_v
|
||
|
|
||
|
self.offset += keys.shape[2]
|
||
|
self.keys[..., prev : self.offset, :] = keys
|
||
|
self.values[..., prev : self.offset, :] = values
|
||
|
return self.keys[..., : self.offset, :], self.values[..., : self.offset, :]
|
||
|
|
||
|
@property
|
||
|
def state(self):
|
||
|
return self.keys, self.values
|
||
|
|
||
|
|
||
|
class MultiHeadAttention(nn.Module):
|
||
|
def __init__(self, dim, n_heads):
|
||
|
super().__init__()
|
||
|
|
||
|
self.n_heads = n_heads
|
||
|
|
||
|
head_dim = dim // n_heads
|
||
|
|
||
|
self.scale = head_dim**-0.5
|
||
|
|
||
|
self.q_proj = nn.Linear(dim, dim, bias=False)
|
||
|
self.k_proj = nn.Linear(dim, dim, bias=False)
|
||
|
self.v_proj = nn.Linear(dim, dim, bias=False)
|
||
|
self.out_proj = nn.Linear(dim, dim, bias=False)
|
||
|
|
||
|
def __call__(
|
||
|
self,
|
||
|
queries: mx.array,
|
||
|
keys: mx.array,
|
||
|
values: mx.array,
|
||
|
mask: Optional[mx.array] = None,
|
||
|
cache: Optional[KVCache] = None,
|
||
|
) -> mx.array:
|
||
|
B, L_q, D = queries.shape
|
||
|
L_k = keys.shape[1]
|
||
|
|
||
|
queries, keys, values = (
|
||
|
self.q_proj(queries),
|
||
|
self.k_proj(keys),
|
||
|
self.v_proj(values),
|
||
|
)
|
||
|
|
||
|
# Prepare the queries, keys and values for the attention computation
|
||
|
queries = queries.reshape(B, L_q, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||
|
keys = keys.reshape(B, L_k, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||
|
values = values.reshape(B, L_k, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||
|
|
||
|
if cache is not None:
|
||
|
keys, values = cache.update_and_fetch(keys, values)
|
||
|
|
||
|
output = mx.fast.scaled_dot_product_attention(
|
||
|
queries, keys, values, scale=self.scale, mask=mask
|
||
|
)
|
||
|
output = output.transpose(0, 2, 1, 3).reshape(B, L_q, -1)
|
||
|
return self.out_proj(output)
|
||
|
|
||
|
|
||
|
class TransformerBlock(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.num_attention_heads = config.decoder.num_attention_heads
|
||
|
self.hidden_size = config.decoder.hidden_size
|
||
|
self.self_attn = MultiHeadAttention(self.hidden_size, self.num_attention_heads)
|
||
|
self.cross_attn = MultiHeadAttention(self.hidden_size, self.num_attention_heads)
|
||
|
self.linear1 = nn.Linear(self.hidden_size, config.decoder.ffn_dim, bias=False)
|
||
|
self.linear2 = nn.Linear(config.decoder.ffn_dim, self.hidden_size, bias=False)
|
||
|
|
||
|
self.norm1 = nn.LayerNorm(self.hidden_size, eps=1e-5)
|
||
|
self.norm_cross = nn.LayerNorm(self.hidden_size, eps=1e-5)
|
||
|
self.norm2 = nn.LayerNorm(self.hidden_size, eps=1e-5)
|
||
|
|
||
|
def __call__(
|
||
|
self,
|
||
|
x: mx.array,
|
||
|
conditioning: mx.array,
|
||
|
mask: Optional[mx.array] = None,
|
||
|
cache: Optional[KVCache] = None,
|
||
|
) -> mx.array:
|
||
|
xn = self.norm1(x)
|
||
|
x += self.self_attn(xn, xn, xn, mask, cache)
|
||
|
xn = self.norm_cross(x)
|
||
|
x += self.cross_attn(xn, conditioning, conditioning, mask)
|
||
|
xn = self.norm2(x)
|
||
|
x += self.linear2(nn.gelu(self.linear1(xn)))
|
||
|
return x
|
||
|
|
||
|
|
||
|
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
|
||
|
def top_k_sampling(
|
||
|
logits: mx.array, top_k: float, temperature: float, axis: int = -1
|
||
|
) -> mx.array:
|
||
|
"""
|
||
|
Apply top-k sampling to logits.
|
||
|
|
||
|
Args:
|
||
|
logits: The logits from the model's output.
|
||
|
top_k: Sample from the top k logits.
|
||
|
temperature: Temperature parameter for softmax distribution reshaping.
|
||
|
axis: Axis along which to sample.
|
||
|
Returns:
|
||
|
token selected based on the top-k criterion.
|
||
|
"""
|
||
|
# referenced implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L449-L460
|
||
|
probs = mx.softmax(logits * (1 / temperature), axis=axis)
|
||
|
|
||
|
# sort probs in ascending order
|
||
|
sorted_indices = mx.argsort(probs, axis=axis)
|
||
|
sorted_probs = mx.take_along_axis(probs, sorted_indices, axis=axis)
|
||
|
prob_threshold = mx.take(sorted_probs, mx.array(-top_k), axis=axis)
|
||
|
|
||
|
# select the top K tokens in probability
|
||
|
top_probs = mx.where(
|
||
|
sorted_probs > prob_threshold,
|
||
|
sorted_probs,
|
||
|
0,
|
||
|
)
|
||
|
|
||
|
sorted_token = mx.random.categorical(mx.log(top_probs), axis=axis)
|
||
|
token = mx.take_along_axis(
|
||
|
sorted_indices, mx.expand_dims(sorted_token, axis), axis=axis
|
||
|
)
|
||
|
|
||
|
return token
|
||
|
|
||
|
|
||
|
def create_sin_embedding(positions: mx.array, dim: int, max_period: float = 10000):
|
||
|
assert dim % 2 == 0
|
||
|
half_dim = dim // 2
|
||
|
adim = mx.arange(half_dim).reshape(1, 1, -1)
|
||
|
phase = positions / (max_period ** (adim / (half_dim - 1)))
|
||
|
return mx.concatenate([mx.cos(phase), mx.sin(phase)], axis=-1)
|
||
|
|
||
|
|
||
|
class MusicGen(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
self.num_codebooks = config.decoder.num_codebooks
|
||
|
self.codebook_size = config.audio_encoder.codebook_size
|
||
|
self.bos_token_id = config.decoder.bos_token_id
|
||
|
self.hidden_size = config.decoder.hidden_size
|
||
|
self.num_attention_heads = config.decoder.num_attention_heads
|
||
|
self.sampling_rate = config.audio_encoder.sampling_rate
|
||
|
|
||
|
self.text_conditioner = TextConditioner(
|
||
|
config.text_encoder._name_or_path,
|
||
|
config.text_encoder.d_model,
|
||
|
self.hidden_size,
|
||
|
)
|
||
|
self.emb = [
|
||
|
nn.Embedding(self.codebook_size + 1, self.hidden_size)
|
||
|
for _ in range(self.num_codebooks)
|
||
|
]
|
||
|
self.layers = [
|
||
|
TransformerBlock(config) for _ in range(config.decoder.num_hidden_layers)
|
||
|
]
|
||
|
self.out_norm = nn.LayerNorm(self.hidden_size, eps=1e-5)
|
||
|
self.linears = [
|
||
|
nn.Linear(self.hidden_size, self.codebook_size, bias=False)
|
||
|
for _ in range(self.num_codebooks)
|
||
|
]
|
||
|
encodec_name = config.audio_encoder._name_or_path.split("/")[-1]
|
||
|
encodec_name = encodec_name.replace("_", "-")
|
||
|
self._audio_decoder, _ = EncodecModel.from_pretrained(
|
||
|
f"mlx-community/{encodec_name}-float32"
|
||
|
)
|
||
|
|
||
|
def __call__(
|
||
|
self,
|
||
|
audio_tokens: mx.array,
|
||
|
conditioning: mx.array,
|
||
|
cache: list[KVCache] = None,
|
||
|
):
|
||
|
|
||
|
if cache is None:
|
||
|
cache = [None] * len(self.layers)
|
||
|
|
||
|
x = sum([self.emb[k](audio_tokens[..., k]) for k in range(self.num_codebooks)])
|
||
|
|
||
|
offset = cache[0].offset if cache[0] is not None else 0
|
||
|
pos_emb = create_sin_embedding(offset, self.hidden_size)
|
||
|
x += pos_emb.astype(x.dtype)
|
||
|
|
||
|
for layer, c in zip(self.layers, cache):
|
||
|
x = layer(x, conditioning, cache=c)
|
||
|
|
||
|
x = self.out_norm(x)
|
||
|
x = mx.stack([self.linears[k](x) for k in range(self.num_codebooks)], axis=-1)
|
||
|
return x
|
||
|
|
||
|
def generate(
|
||
|
self,
|
||
|
text: str,
|
||
|
max_steps: int = 200,
|
||
|
top_k: int = 250,
|
||
|
temp: float = 1.0,
|
||
|
guidance_coef: float = 3.0,
|
||
|
) -> mx.array:
|
||
|
"""
|
||
|
Generates a waveform conditioned on `text`.
|
||
|
|
||
|
Args:
|
||
|
text (str): The text to condition generation on.
|
||
|
max_steps (int): Max steps to generate.
|
||
|
top_k (int): Top k used in sampling.
|
||
|
temp (float): Sampling softmax temperature.
|
||
|
guidance_coef (float): Classifier free guidance coefficent.
|
||
|
Used to combine conditional and unconditional logits.
|
||
|
|
||
|
Returns:
|
||
|
An mx.array of audio samples of shape ``(num_samples,)``.
|
||
|
"""
|
||
|
# Assuming no audio prompt we start with all bos token for the codebooks
|
||
|
audio_shape = (1, max_steps + 1, self.num_codebooks)
|
||
|
audio_seq = mx.full(audio_shape, self.bos_token_id)
|
||
|
|
||
|
text_tokens = self.text_conditioner(text)
|
||
|
# Compute conditional and unconditional logits in one batch
|
||
|
text_tokens = mx.concatenate([text_tokens, mx.zeros_like(text_tokens)], axis=0)
|
||
|
|
||
|
head_dim = self.hidden_size // self.num_attention_heads
|
||
|
cache = [
|
||
|
KVCache(head_dim, self.num_attention_heads) for _ in range(len(self.layers))
|
||
|
]
|
||
|
for offset in tqdm(range(max_steps)):
|
||
|
audio_input = mx.tile(audio_seq[:, offset : offset + 1], [2, 1, 1])
|
||
|
audio_logits = self(audio_input, text_tokens, cache)
|
||
|
cond_logits, uncond_logits = audio_logits[:1], audio_logits[1:2]
|
||
|
audio_logits = uncond_logits + (cond_logits - uncond_logits) * guidance_coef
|
||
|
audio_tokens = top_k_sampling(audio_logits, top_k, temp, axis=-2)
|
||
|
# "delay" pattern
|
||
|
audio_tokens[..., offset + 1 :] = self.bos_token_id
|
||
|
audio_tokens[..., : -max_steps + offset] = self.bos_token_id
|
||
|
audio_seq[:, offset + 1 : offset + 2] = audio_tokens
|
||
|
mx.eval(audio_seq)
|
||
|
|
||
|
# Undo delay
|
||
|
for i in range(self.num_codebooks):
|
||
|
audio_seq[:, : -self.num_codebooks, i] = audio_seq[
|
||
|
:, i : -self.num_codebooks + i, i
|
||
|
]
|
||
|
audio_seq = audio_seq[:, 1 : -self.num_codebooks + 1]
|
||
|
|
||
|
audio_seq = mx.swapaxes(audio_seq, -1, -2)[:, mx.newaxis]
|
||
|
audio = self._audio_decoder.decode(audio_seq, audio_scales=[None])
|
||
|
return audio[0]
|
||
|
|
||
|
@classmethod
|
||
|
def sanitize(cls, weights):
|
||
|
out_weights = {}
|
||
|
for k, arr in weights.items():
|
||
|
if k.startswith("transformer."):
|
||
|
k = k[len("transformer.") :]
|
||
|
|
||
|
if "cross_attention" in k:
|
||
|
k = k.replace("cross_attention", "cross_attn")
|
||
|
|
||
|
if "condition_provider" in k:
|
||
|
k = k.replace(
|
||
|
"condition_provider.conditioners.description", "text_conditioner"
|
||
|
)
|
||
|
|
||
|
if "in_proj_weight" in k:
|
||
|
dim = arr.shape[0] // 3
|
||
|
name = "in_proj_weight"
|
||
|
out_weights[k.replace(name, "q_proj.weight")] = arr[:dim]
|
||
|
out_weights[k.replace(name, "k_proj.weight")] = arr[dim : dim * 2]
|
||
|
out_weights[k.replace(name, "v_proj.weight")] = arr[dim * 2 :]
|
||
|
continue
|
||
|
|
||
|
out_weights[k] = arr
|
||
|
return out_weights
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(cls, path_or_repo: str):
|
||
|
import torch
|
||
|
from huggingface_hub import snapshot_download
|
||
|
|
||
|
path = Path(path_or_repo)
|
||
|
if not path.exists():
|
||
|
path = Path(
|
||
|
snapshot_download(
|
||
|
repo_id=path_or_repo,
|
||
|
allow_patterns=["*.json", "state_dict.bin"],
|
||
|
)
|
||
|
)
|
||
|
|
||
|
with open(path / "config.json", "r") as f:
|
||
|
config = SimpleNamespace(**json.load(f))
|
||
|
config.text_encoder = SimpleNamespace(**config.text_encoder)
|
||
|
config.audio_encoder = SimpleNamespace(**config.audio_encoder)
|
||
|
config.decoder = SimpleNamespace(**config.decoder)
|
||
|
|
||
|
weights = torch.load(path / "state_dict.bin", weights_only=True)["best_state"]
|
||
|
weights = {k: mx.array(v) for k, v in weights.items()}
|
||
|
weights = cls.sanitize(weights)
|
||
|
|
||
|
model = MusicGen(config)
|
||
|
model.load_weights(list(weights.items()))
|
||
|
return model
|