mlx-examples/whisper/mlx_whisper/cli.py

257 lines
8.4 KiB
Python
Raw Permalink Normal View History

# Copyright © 2024 Apple Inc.
import argparse
import os
import pathlib
import traceback
import warnings
from . import audio
from .tokenizer import LANGUAGES, TO_LANGUAGE_CODE
from .transcribe import transcribe
from .writers import get_writer
def build_parser():
def optional_int(string):
return None if string == "None" else int(string)
def optional_float(string):
return None if string == "None" else float(string)
def str2bool(string):
str2val = {"True": True, "False": False}
if string in str2val:
return str2val[string]
else:
raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}")
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("audio", nargs="+", help="Audio file(s) to transcribe")
parser.add_argument(
"--model",
default="mlx-community/whisper-tiny",
type=str,
help="The model directory or hugging face repo",
)
parser.add_argument(
"--output-name",
type=str,
default=None,
help=(
"The name of transcription/translation output files before "
"--output-format extensions"
),
)
parser.add_argument(
"--output-dir",
"-o",
type=str,
default=".",
help="Directory to save the outputs",
)
parser.add_argument(
"--output-format",
"-f",
type=str,
default="txt",
choices=["txt", "vtt", "srt", "tsv", "json", "all"],
help="Format of the output file",
)
parser.add_argument(
"--verbose",
type=str2bool,
default=True,
help="Whether to print out progress and debug messages",
)
parser.add_argument(
"--task",
type=str,
default="transcribe",
choices=["transcribe", "translate"],
help="Perform speech recognition ('transcribe') or speech translation ('translate')",
)
parser.add_argument(
"--language",
type=str,
default=None,
choices=sorted(LANGUAGES.keys())
+ sorted([k.title() for k in TO_LANGUAGE_CODE.keys()]),
help="Language spoken in the audio, specify None to auto-detect",
)
parser.add_argument(
"--temperature", type=float, default=0, help="Temperature for sampling"
)
parser.add_argument(
"--best-of",
type=optional_int,
default=5,
help="Number of candidates when sampling with non-zero temperature",
)
parser.add_argument(
"--patience",
type=float,
default=None,
help="Optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search",
)
parser.add_argument(
"--length-penalty",
type=float,
default=None,
help="Optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default.",
)
parser.add_argument(
"--suppress-tokens",
type=str,
default="-1",
help="Comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations",
)
parser.add_argument(
"--initial-prompt",
type=str,
default=None,
help="Optional text to provide as a prompt for the first window.",
)
parser.add_argument(
"--condition-on-previous-text",
type=str2bool,
default=True,
help="If True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop",
)
parser.add_argument(
"--fp16",
type=str2bool,
default=True,
help="Whether to perform inference in fp16",
)
parser.add_argument(
"--compression-ratio-threshold",
type=optional_float,
default=2.4,
help="if the gzip compression ratio is higher than this value, treat the decoding as failed",
)
parser.add_argument(
"--logprob-threshold",
type=optional_float,
default=-1.0,
help="If the average log probability is lower than this value, treat the decoding as failed",
)
parser.add_argument(
"--no-speech-threshold",
type=optional_float,
default=0.6,
help="If the probability of the token is higher than this value the decoding has failed due to `logprob_threshold`, consider the segment as silence",
)
parser.add_argument(
"--word-timestamps",
type=str2bool,
default=False,
help="Extract word-level timestamps and refine the results based on them",
)
parser.add_argument(
"--prepend-punctuations",
type=str,
default="\"'“¿([{-",
help="If word-timestamps is True, merge these punctuation symbols with the next word",
)
parser.add_argument(
"--append-punctuations",
type=str,
default="\"'.。,!?::”)]}、",
help="If word_timestamps is True, merge these punctuation symbols with the previous word",
)
parser.add_argument(
"--highlight-words",
type=str2bool,
default=False,
help="(requires --word_timestamps True) underline each word as it is spoken in srt and vtt",
)
parser.add_argument(
"--max-line-width",
type=int,
default=None,
help="(requires --word_timestamps True) the maximum number of characters in a line before breaking the line",
)
parser.add_argument(
"--max-line-count",
type=int,
default=None,
help="(requires --word_timestamps True) the maximum number of lines in a segment",
)
parser.add_argument(
"--max-words-per-line",
type=int,
default=None,
help="(requires --word_timestamps True, no effect with --max_line_width) the maximum number of words in a segment",
)
parser.add_argument(
"--hallucination-silence-threshold",
type=optional_float,
help="(requires --word_timestamps True) skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected",
)
parser.add_argument(
"--clip-timestamps",
type=str,
default="0",
help="Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to process, where the last end timestamp defaults to the end of the file",
)
return parser
def main():
parser = build_parser()
args = vars(parser.parse_args())
if args["verbose"] is True:
print(f"Args: {args}")
path_or_hf_repo: str = args.pop("model")
output_dir: str = args.pop("output_dir")
output_format: str = args.pop("output_format")
output_name: str = args.pop("output_name")
os.makedirs(output_dir, exist_ok=True)
writer = get_writer(output_format, output_dir)
word_options = [
"highlight_words",
"max_line_count",
"max_line_width",
"max_words_per_line",
]
writer_args = {arg: args.pop(arg) for arg in word_options}
if not args["word_timestamps"]:
for k, v in writer_args.items():
if v:
argop = k.replace("_", "-")
parser.error(f"--{argop} requires --word-timestamps True")
if writer_args["max_line_count"] and not writer_args["max_line_width"]:
warnings.warn("--max-line-count has no effect without --max-line-width")
if writer_args["max_words_per_line"] and writer_args["max_line_width"]:
warnings.warn("--max-words-per-line has no effect with --max-line-width")
for audio_obj in args.pop("audio"):
if audio_obj == "-":
# receive the contents from stdin rather than read a file
audio_obj = audio.load_audio(from_stdin=True)
output_name = output_name or "content"
else:
output_name = output_name or pathlib.Path(audio_obj).stem
try:
result = transcribe(
audio_obj,
path_or_hf_repo=path_or_hf_repo,
**args,
)
writer(result, output_name, **writer_args)
except Exception as e:
traceback.print_exc()
print(f"Skipping {audio_obj} due to {type(e).__name__}: {str(e)}")
if __name__ == "__main__":
main()