mlx-examples/llms/mlx_lm/tokenizer_utils.py

352 lines
11 KiB
Python
Raw Normal View History

2024-04-09 13:36:01 +08:00
import json
from functools import partial
2024-04-09 13:36:01 +08:00
from transformers import AutoTokenizer
REPLACEMENT_CHAR = "\ufffd"
def _remove_space(x):
if x and x[0] == " ":
return x[1:]
return x
class StreamingDetokenizer:
"""The streaming detokenizer interface so that we can detokenize one token at a time.
Example usage is as follows:
detokenizer = ...
# Reset the tokenizer state
detokenizer.reset()
for token in generate(...):
detokenizer.add_token(token.item())
# Contains the whole text so far. Some tokens may not be included
# since it contains whole words usually.
detokenizer.text
# Contains the printable segment (usually a word) since the last
# time it was accessed
detokenizer.last_segment
# Contains all the tokens added so far
detokenizer.tokens
# Make sure that we detokenize any remaining tokens
detokenizer.finalize()
# Now detokenizer.text should match tokenizer.decode(detokenizer.tokens)
"""
__slots__ = ("text", "tokens", "offset")
def reset(self):
raise NotImplementedError()
def add_token(self, token):
raise NotImplementedError()
def finalize(self):
raise NotImplementedError()
@property
def last_segment(self):
"""Return the last segment of readable text since last time this property was accessed."""
text = self.text
if text and text[-1] != REPLACEMENT_CHAR:
segment = text[self.offset :]
self.offset = len(text)
return segment
return ""
class NaiveStreamingDetokenizer(StreamingDetokenizer):
"""NaiveStreamingDetokenizer relies on the underlying tokenizer
implementation and should work with every tokenizer.
Its complexity is O(T^2) where T is the longest line since it will
repeatedly detokenize the same tokens until a new line is generated.
"""
def __init__(self, tokenizer):
self._tokenizer = tokenizer
self._tokenizer.decode([0])
2024-04-09 13:36:01 +08:00
self.reset()
def reset(self):
self.offset = 0
self._tokens = []
self._text = ""
self._current_tokens = []
self._current_text = ""
def add_token(self, token):
self._current_tokens.append(token)
def finalize(self):
self._tokens.extend(self._current_tokens)
self._text += self._tokenizer.decode(self._current_tokens)
self._current_tokens = []
self._current_text = ""
@property
def text(self):
if self._current_tokens:
self._current_text = self._tokenizer.decode(self._current_tokens)
if (
self._tokenizer.clean_up_tokenization_spaces
and self._current_text[-1] == " "
):
self._current_text = self._current_text[:-1]
2024-04-09 13:36:01 +08:00
if self._current_text and self._current_text[-1] == "\n":
self._tokens.extend(self._current_tokens)
self._text += self._current_text
self._current_tokens.clear()
self._current_text = ""
return self._text + self._current_text
@property
def tokens(self):
return self._tokens
class SPMStreamingDetokenizer(StreamingDetokenizer):
"""A streaming detokenizer for SPM models.
It adds tokens to the text if the next token starts with the special SPM
underscore which results in linear complexity.
"""
def __init__(self, tokenizer, trim_space=True):
self.trim_space = trim_space
2024-04-09 13:36:01 +08:00
# Extract the tokens in a list from id to text
2024-06-27 21:38:19 +08:00
self.tokenmap = [""] * (max(tokenizer.vocab.values()) + 1)
2024-04-09 13:36:01 +08:00
for value, tokenid in tokenizer.vocab.items():
self.tokenmap[tokenid] = value
# Replace bytes with their value
for i in range(len(self.tokenmap)):
if self.tokenmap[i].startswith("<0x"):
self.tokenmap[i] = chr(int(self.tokenmap[i][3:5], 16))
self.reset()
def reset(self):
self.offset = 0
self._unflushed = ""
self.text = ""
self.tokens = []
def add_token(self, token):
v = self.tokenmap[token]
if v[0] == "\u2581":
if self.text or not self.trim_space:
2024-04-09 13:36:01 +08:00
self.text += self._unflushed.replace("\u2581", " ")
else:
self.text = _remove_space(self._unflushed.replace("\u2581", " "))
self._unflushed = v
else:
self._unflushed += v
def finalize(self):
if self.text or not self.trim_space:
2024-04-09 13:36:01 +08:00
self.text += self._unflushed.replace("\u2581", " ")
else:
self.text = _remove_space(self._unflushed.replace("\u2581", " "))
self._unflushed = ""
class BPEStreamingDetokenizer(StreamingDetokenizer):
"""A streaming detokenizer for OpenAI style BPE models.
It adds tokens to the text if the next token starts with a space similar to
the SPM detokenizer.
"""
_byte_decoder = None
_space_matches = (".", "?", "!", ",", "n't", "'m", "'s", "'ve", "'re")
2024-04-09 13:36:01 +08:00
def __init__(self, tokenizer):
self.clean_spaces = tokenizer.clean_up_tokenization_spaces
2024-04-09 13:36:01 +08:00
# Extract the tokens in a list from id to text
self.tokenmap = [None] * len(tokenizer.vocab)
for value, tokenid in tokenizer.vocab.items():
self.tokenmap[tokenid] = value
self.reset()
# Make the BPE byte decoder from
# https://github.com/openai/gpt-2/blob/master/src/encoder.py
self.make_byte_decoder()
2024-11-02 07:30:32 +08:00
self._added_ids = set(tokenizer.added_tokens_decoder.keys())
2024-04-09 13:36:01 +08:00
def reset(self):
self.offset = 0
self._unflushed = ""
self.text = ""
self.tokens = []
def _maybe_trim_space(self, current_text):
if len(current_text) == 0:
return current_text
elif current_text[0] != " ":
return current_text
elif not self.text:
return current_text[1:]
elif self.clean_spaces and current_text[1:].startswith(self._space_matches):
return current_text[1:]
return current_text
2024-04-09 13:36:01 +08:00
def add_token(self, token):
v = self.tokenmap[token]
2024-11-02 07:30:32 +08:00
is_added = token in self._added_ids
if is_added or self._byte_decoder[v[0]] == 32:
2024-04-09 13:36:01 +08:00
current_text = bytearray(
self._byte_decoder[c] for c in self._unflushed
).decode("utf-8")
self.text += self._maybe_trim_space(current_text)
2024-11-02 07:30:32 +08:00
if is_added:
self.text += v
self._unflushed = ""
else:
self._unflushed = v
2024-04-09 13:36:01 +08:00
else:
self._unflushed += v
def finalize(self):
current_text = bytearray(self._byte_decoder[c] for c in self._unflushed).decode(
"utf-8"
)
self.text += self._maybe_trim_space(current_text)
2024-04-09 13:36:01 +08:00
self._unflushed = ""
@classmethod
def make_byte_decoder(cls):
"""See https://github.com/openai/gpt-2/blob/master/src/encoder.py for the rationale."""
if cls._byte_decoder is not None:
return
char_to_bytes = {}
limits = [
0,
ord("!"),
ord("~") + 1,
ord("¡"),
ord("¬") + 1,
ord("®"),
ord("ÿ") + 1,
]
n = 0
for i, (start, stop) in enumerate(zip(limits, limits[1:])):
if i % 2 == 0:
for b in range(start, stop):
char_to_bytes[chr(2**8 + n)] = b
n += 1
else:
for b in range(start, stop):
char_to_bytes[chr(b)] = b
cls._byte_decoder = char_to_bytes
class TokenizerWrapper:
"""A wrapper that combines an HF tokenizer and a detokenizer.
Accessing any attribute other than the ``detokenizer`` is forwarded to the
huggingface tokenizer.
"""
def __init__(self, tokenizer, detokenizer_class=NaiveStreamingDetokenizer):
self._tokenizer = tokenizer
self._detokenizer = detokenizer_class(tokenizer)
def __getattr__(self, attr):
if attr == "detokenizer":
return self._detokenizer
elif attr.startswith("_"):
return self.__getattribute__(attr)
2024-04-09 13:36:01 +08:00
else:
return getattr(self._tokenizer, attr)
def __setattr__(self, attr, value):
if attr == "detokenizer":
raise AttributeError("Cannot set the detokenizer.")
elif attr.startswith("_"):
super().__setattr__(attr, value)
else:
setattr(self._tokenizer, attr, value)
2024-04-09 13:36:01 +08:00
def _match(a, b):
if type(a) != type(b):
return False
if isinstance(a, dict):
return len(a) == len(b) and all(k in b and _match(a[k], b[k]) for k in a)
if isinstance(a, list):
return len(a) == len(b) and all(_match(ai, bi) for ai, bi in zip(a, b))
return a == b
def _is_spm_decoder(decoder):
_target_description = {
"type": "Sequence",
"decoders": [
{"type": "Replace", "pattern": {"String": ""}, "content": " "},
{"type": "ByteFallback"},
{"type": "Fuse"},
{"type": "Strip", "content": " ", "start": 1, "stop": 0},
],
}
return _match(_target_description, decoder)
def _is_spm_decoder_no_space(decoder):
_target_description = {
"type": "Sequence",
"decoders": [
{"type": "Replace", "pattern": {"String": ""}, "content": " "},
{"type": "ByteFallback"},
{"type": "Fuse"},
],
}
return _match(_target_description, decoder)
2024-04-09 13:36:01 +08:00
def _is_bpe_decoder(decoder):
return isinstance(decoder, dict) and decoder.get("type", None) == "ByteLevel"
2024-04-09 13:36:01 +08:00
def load_tokenizer(model_path, tokenizer_config_extra={}):
"""Load a huggingface tokenizer and try to infer the type of streaming
detokenizer to use.
Note, to use a fast streaming tokenizer, pass a local file path rather than
a Hugging Face repo ID.
"""
detokenizer_class = NaiveStreamingDetokenizer
tokenizer_file = model_path / "tokenizer.json"
if tokenizer_file.exists():
with open(tokenizer_file, "r") as fid:
tokenizer_content = json.load(fid)
2024-04-09 13:36:01 +08:00
if "decoder" in tokenizer_content:
if _is_spm_decoder(tokenizer_content["decoder"]):
detokenizer_class = SPMStreamingDetokenizer
elif _is_spm_decoder_no_space(tokenizer_content["decoder"]):
detokenizer_class = partial(SPMStreamingDetokenizer, trim_space=False)
2024-04-09 13:36:01 +08:00
elif _is_bpe_decoder(tokenizer_content["decoder"]):
detokenizer_class = BPEStreamingDetokenizer
return TokenizerWrapper(
AutoTokenizer.from_pretrained(model_path, **tokenizer_config_extra),
detokenizer_class,
)