mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00
258 lines
8.3 KiB
Python
258 lines
8.3 KiB
Python
![]() |
from dataclasses import dataclass
|
||
|
from typing import Dict, Optional, Tuple, Union
|
||
|
|
||
|
import mlx.core as mx
|
||
|
import mlx.nn as nn
|
||
|
import numpy as np
|
||
|
|
||
|
from .base import BaseModelArgs
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ModelArgs(BaseModelArgs):
|
||
|
model_type: str
|
||
|
hidden_size: int
|
||
|
num_hidden_layers: int
|
||
|
intermediate_size: int
|
||
|
num_attention_heads: int
|
||
|
num_experts_per_tok: int
|
||
|
num_experts: int
|
||
|
moe_intermediate_size: int
|
||
|
shared_expert_intermediate_size: int
|
||
|
rms_norm_eps: float
|
||
|
vocab_size: int
|
||
|
num_key_value_heads: int = None
|
||
|
rope_theta: float = 1000000
|
||
|
rope_traditional: bool = False
|
||
|
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
||
|
tie_word_embeddings: bool = False
|
||
|
|
||
|
def __post_init__(self):
|
||
|
if self.num_key_value_heads is None:
|
||
|
self.num_key_value_heads = self.num_attention_heads
|
||
|
|
||
|
if self.rope_scaling:
|
||
|
required_keys = {"factor", "type"}
|
||
|
if not all(key in self.rope_scaling for key in required_keys):
|
||
|
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
||
|
|
||
|
if self.rope_scaling["type"] != "linear":
|
||
|
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
|
||
|
|
||
|
|
||
|
class Attention(nn.Module):
|
||
|
def __init__(self, args: ModelArgs):
|
||
|
super().__init__()
|
||
|
|
||
|
dim = args.hidden_size
|
||
|
self.n_heads = n_heads = args.num_attention_heads
|
||
|
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
|
||
|
|
||
|
head_dim = args.hidden_size // n_heads
|
||
|
self.scale = head_dim**-0.5
|
||
|
|
||
|
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=True)
|
||
|
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
|
||
|
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
|
||
|
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
||
|
|
||
|
self.rope = nn.RoPE(
|
||
|
head_dim,
|
||
|
traditional=args.rope_traditional,
|
||
|
base=args.rope_theta,
|
||
|
)
|
||
|
|
||
|
def __call__(
|
||
|
self,
|
||
|
x: mx.array,
|
||
|
mask: Optional[mx.array] = None,
|
||
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||
|
) -> mx.array:
|
||
|
B, L, D = x.shape
|
||
|
|
||
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
||
|
|
||
|
# Prepare the queries, keys and values for the attention computation
|
||
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
||
|
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||
|
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
||
|
|
||
|
if cache is not None:
|
||
|
key_cache, value_cache = cache
|
||
|
queries = self.rope(queries, offset=key_cache.shape[2])
|
||
|
keys = self.rope(keys, offset=key_cache.shape[2])
|
||
|
keys = mx.concatenate([key_cache, keys], axis=2)
|
||
|
values = mx.concatenate([value_cache, values], axis=2)
|
||
|
else:
|
||
|
queries = self.rope(queries)
|
||
|
keys = self.rope(keys)
|
||
|
|
||
|
output = mx.fast.scaled_dot_product_attention(
|
||
|
queries, keys, values, scale=self.scale, mask=mask
|
||
|
)
|
||
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||
|
return self.o_proj(output), (keys, values)
|
||
|
|
||
|
|
||
|
class Qwen2MoeMLP(nn.Module):
|
||
|
def __init__(self, dim, hidden_dim):
|
||
|
super().__init__()
|
||
|
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
||
|
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
||
|
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
||
|
|
||
|
def __call__(self, x) -> mx.array:
|
||
|
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
||
|
|
||
|
|
||
|
class Qwen2MoeSparseMoeBlock(nn.Module):
|
||
|
def __init__(self, args: ModelArgs):
|
||
|
super().__init__()
|
||
|
dim = args.hidden_size
|
||
|
intermediate_size = args.moe_intermediate_size
|
||
|
shared_expert_intermediate_size = args.shared_expert_intermediate_size
|
||
|
|
||
|
self.num_experts = num_experts = args.num_experts
|
||
|
self.top_k = args.num_experts_per_tok
|
||
|
|
||
|
# gating
|
||
|
self.gate = nn.Linear(dim, num_experts, bias=False)
|
||
|
self.experts = [
|
||
|
Qwen2MoeMLP(dim, intermediate_size) for _ in range(self.num_experts)
|
||
|
]
|
||
|
self.shared_expert = Qwen2MoeMLP(dim, shared_expert_intermediate_size)
|
||
|
self.shared_expert_gate = nn.Linear(dim, 1, bias=False)
|
||
|
|
||
|
def __call__(
|
||
|
self,
|
||
|
x: mx.array,
|
||
|
):
|
||
|
ne = self.top_k
|
||
|
B, L, D = x.shape
|
||
|
x = x.reshape(-1, D)
|
||
|
|
||
|
# router_logits: (batch * sequence_length, n_experts)
|
||
|
gates = self.gate(x)
|
||
|
gates = mx.softmax(gates.astype(mx.float32), axis=-1)
|
||
|
|
||
|
inds = mx.stop_gradient(mx.argpartition(-gates, kth=ne, axis=-1)[:, :ne])
|
||
|
|
||
|
scores = mx.take_along_axis(gates, inds, axis=-1).astype(x.dtype)
|
||
|
|
||
|
if self.training:
|
||
|
inds = np.array(inds)
|
||
|
y = mx.zeros((B, ne, D), x.dtype)
|
||
|
for e, expert in enumerate(self.experts):
|
||
|
idx1, idx2 = map(mx.array, np.where(inds == e))
|
||
|
if idx1.size == 0:
|
||
|
continue
|
||
|
y[idx1, idx2] = expert(x[idx1])
|
||
|
|
||
|
y = (y * scores[:, :, None]).sum(axis=1)
|
||
|
else:
|
||
|
y = []
|
||
|
for xt, st, it in zip(x, scores, inds.tolist()):
|
||
|
yt = mx.stack([self.experts[e](xt) for e in it], axis=-1)
|
||
|
yt = (yt * st).sum(axis=-1)
|
||
|
y.append(yt)
|
||
|
|
||
|
y = mx.stack(y, axis=0)
|
||
|
|
||
|
shared_expert_output = self.shared_expert(x)
|
||
|
shared_expert_output = (
|
||
|
mx.sigmoid(self.shared_expert_gate(x)) * shared_expert_output
|
||
|
)
|
||
|
|
||
|
y += shared_expert_output
|
||
|
|
||
|
return y.reshape(B, L, -1)
|
||
|
|
||
|
|
||
|
class Qwen2MoeDecoderLayer(nn.Module):
|
||
|
def __init__(self, args: ModelArgs):
|
||
|
super().__init__()
|
||
|
self.hidden_size = args.hidden_size
|
||
|
self.self_attn = Attention(args)
|
||
|
self.mlp = Qwen2MoeSparseMoeBlock(args)
|
||
|
|
||
|
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||
|
self.post_attention_layernorm = nn.RMSNorm(
|
||
|
args.hidden_size, eps=args.rms_norm_eps
|
||
|
)
|
||
|
self.args = args
|
||
|
|
||
|
def __call__(
|
||
|
self,
|
||
|
x: mx.array,
|
||
|
mask: Optional[mx.array] = None,
|
||
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
||
|
) -> mx.array:
|
||
|
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
|
||
|
h = x + r
|
||
|
r = self.mlp(self.post_attention_layernorm(h))
|
||
|
out = h + r
|
||
|
return out, cache
|
||
|
|
||
|
|
||
|
class Qwen2MoeModel(nn.Module):
|
||
|
def __init__(self, args: ModelArgs):
|
||
|
super().__init__()
|
||
|
self.args = args
|
||
|
self.vocab_size = args.vocab_size
|
||
|
self.num_hidden_layers = args.num_hidden_layers
|
||
|
assert self.vocab_size > 0
|
||
|
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
|
||
|
self.layers = [
|
||
|
Qwen2MoeDecoderLayer(args=args) for _ in range(args.num_hidden_layers)
|
||
|
]
|
||
|
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
||
|
|
||
|
def __call__(
|
||
|
self,
|
||
|
inputs: mx.array,
|
||
|
cache=None,
|
||
|
):
|
||
|
h = self.embed_tokens(inputs)
|
||
|
|
||
|
mask = None
|
||
|
if h.shape[1] > 1:
|
||
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
||
|
mask = mask.astype(h.dtype)
|
||
|
|
||
|
if cache is None:
|
||
|
cache = [None] * len(self.layers)
|
||
|
|
||
|
for e, layer in enumerate(self.layers):
|
||
|
h, cache[e] = layer(h, mask, cache[e])
|
||
|
|
||
|
return self.norm(h), cache
|
||
|
|
||
|
|
||
|
class Model(nn.Module):
|
||
|
def __init__(self, args: ModelArgs):
|
||
|
super().__init__()
|
||
|
self.args = args
|
||
|
self.model_type = args.model_type
|
||
|
self.model = Qwen2MoeModel(args)
|
||
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||
|
|
||
|
def __call__(
|
||
|
self,
|
||
|
inputs: mx.array,
|
||
|
cache=None,
|
||
|
):
|
||
|
out, cache = self.model(inputs, cache)
|
||
|
return self.lm_head(out), cache
|
||
|
|
||
|
def sanitize(self, weights):
|
||
|
if self.args.tie_word_embeddings and "lm_head.weight" not in weights:
|
||
|
weights["lm_head.weight"] = weights["model.embed_tokens.weight"]
|
||
|
# Remove unused precomputed rotary freqs
|
||
|
return {
|
||
|
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
|
||
|
}
|
||
|
|
||
|
@property
|
||
|
def layers(self):
|
||
|
return self.model.layers
|