mlx-examples/cifar/main.py

109 lines
3.2 KiB
Python
Raw Normal View History

2023-12-13 02:01:06 +08:00
import argparse
import resnet
import numpy as np
import mlx.nn as nn
import mlx.core as mx
import mlx.optimizers as optim
from dataset import get_cifar10
parser = argparse.ArgumentParser(add_help=True)
parser.add_argument(
"--arch",
type=str,
default="resnet20",
help="model architecture [resnet20, resnet32, resnet44, resnet56, resnet110, resnet1202]",
)
parser.add_argument("--batch_size", type=int, default=128, help="batch size")
parser.add_argument("--epochs", type=int, default=100, help="number of epochs")
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate")
parser.add_argument("--seed", type=int, default=0, help="random seed")
parser.add_argument("--cpu_only", action="store_true", help="use cpu only")
def loss_fn(model, inp, tgt):
return mx.mean(nn.losses.cross_entropy(model(inp), tgt))
def eval_fn(model, inp, tgt):
return mx.mean(mx.argmax(model(inp), axis=1) == tgt)
def train_epoch(model, train_iter, optimizer, epoch):
def train_step(model, inp, tgt):
output = model(inp)
loss = mx.mean(nn.losses.cross_entropy(output, tgt))
acc = mx.mean(mx.argmax(output, axis=1) == tgt)
return loss, acc
train_step_fn = nn.value_and_grad(model, train_step)
losses = []
accs = []
for batch_counter, batch in enumerate(train_iter):
x = mx.array(batch["image"])
y = mx.array(batch["label"])
(loss, acc), grads = train_step_fn(model, x, y)
optimizer.update(model, grads)
mx.eval(model.parameters(), optimizer.state)
loss_value = loss.item()
acc_value = acc.item()
losses.append(loss_value)
accs.append(acc_value)
if batch_counter % 10 == 0:
print(
f"Epoch {epoch:02d}[{batch_counter:03d}]: tr_loss {loss_value:.3f}, tr_acc {acc_value:.3f}"
)
mean_tr_loss = np.mean(np.array(losses))
mean_tr_acc = np.mean(np.array(accs))
return mean_tr_loss, mean_tr_acc
def test_epoch(model, test_iter, epoch):
accs = []
for batch_counter, batch in enumerate(test_iter):
x = mx.array(batch["image"])
y = mx.array(batch["label"])
acc = eval_fn(model, x, y)
acc_value = acc.item()
accs.append(acc_value)
mean_acc = np.mean(np.array(accs))
return mean_acc
def main(args):
np.random.seed(args.seed)
mx.random.seed(args.seed)
model = resnet.__dict__[args.arch]()
print("num_params: {:0.04f} M".format(model.num_params() / 1e6))
mx.eval(model.parameters())
optimizer = optim.Adam(learning_rate=args.lr)
for epoch in range(args.epochs):
# get data every epoch
# or set .repeat() on the data stream appropriately
train_data, test_data, tr_batches, _ = get_cifar10(args.batch_size)
epoch_tr_loss, epoch_tr_acc = train_epoch(model, train_data, optimizer, epoch)
print(
f"Epoch {epoch}: avg. tr_loss {epoch_tr_loss:.3f}, avg. tr_acc {epoch_tr_acc:.3f}"
)
epoch_test_acc = test_epoch(model, test_data, epoch)
print(f"Epoch {epoch}: Test_acc {epoch_test_acc:.3f}")
if __name__ == "__main__":
args = parser.parse_args()
if args.cpu_only:
mx.set_default_device(mx.cpu)
main(args)