mlx-examples/llms/hf_llm/generate.py

76 lines
2.1 KiB
Python
Raw Normal View History

import argparse
import time
import mlx.core as mx
from utils import generate, load
DEFAULT_MODEL_PATH = "mlx_model"
DEFAULT_PROMPT = "hello"
DEFAULT_MAX_TOKENS = 100
DEFAULT_TEMP = 0.6
DEFAULT_SEED = 0
def setup_arg_parser():
"""Set up and return the argument parser."""
parser = argparse.ArgumentParser(description="LLM inference script")
parser.add_argument(
"--model",
type=str,
default="mlx_model",
help="The path to the local model directory or Hugging Face repo.",
)
parser.add_argument(
"--prompt", default=DEFAULT_PROMPT, help="Message to be processed by the model"
)
parser.add_argument(
"--max-tokens",
"-m",
type=int,
default=DEFAULT_MAX_TOKENS,
help="Maximum number of tokens to generate",
)
parser.add_argument(
"--temp", type=float, default=DEFAULT_TEMP, help="Sampling temperature"
)
parser.add_argument("--seed", type=int, default=DEFAULT_SEED, help="PRNG seed")
return parser
def main(args):
mx.random.seed(args.seed)
model, tokenizer = load(args.model)
print("=" * 10)
print("Prompt:", args.prompt)
prompt = tokenizer.encode(args.prompt)
prompt = mx.array(prompt)
tic = time.time()
tokens = []
skip = 0
for token, n in zip(generate(prompt, model, args.temp), range(args.max_tokens)):
if token == tokenizer.eos_token_id:
break
if n == 0:
prompt_time = time.time() - tic
tic = time.time()
tokens.append(token.item())
s = tokenizer.decode(tokens)
print(s[skip:], end="", flush=True)
skip = len(s)
print(tokenizer.decode(tokens)[skip:], flush=True)
gen_time = time.time() - tic
print("=" * 10)
if len(tokens) == 0:
print("No tokens generated for this prompt")
return
prompt_tps = prompt.size / prompt_time
gen_tps = (len(tokens) - 1) / gen_time
print(f"Prompt: {prompt_tps:.3f} tokens-per-sec")
print(f"Generation: {gen_tps:.3f} tokens-per-sec")
if __name__ == "__main__":
parser = setup_arg_parser()
args = parser.parse_args()
main(args)