mlx-examples/llms/mlx_lm/fuse.py

129 lines
3.5 KiB
Python
Raw Normal View History

import argparse
import glob
import shutil
from pathlib import Path
from mlx.utils import tree_flatten, tree_unflatten
from .gguf import convert_to_gguf
from .tuner.lora import LoRALinear
from .tuner.utils import apply_lora_layers, dequantize
from .utils import (
fetch_from_hub,
get_model_path,
save_config,
save_weights,
upload_to_hub,
)
def parse_arguments() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="LoRA or QLoRA finetuning.")
parser.add_argument(
"--model",
default="mlx_model",
help="The path to the local model directory or Hugging Face repo.",
)
parser.add_argument(
"--save-path",
default="lora_fused_model",
help="The path to save the fused model.",
)
parser.add_argument(
"--adapter-path",
type=str,
default="adapters",
help="Path to the trained adapter weights and config.",
)
parser.add_argument(
"--hf-path",
type=str,
default=None,
help="Path to the original Hugging Face model. Required for upload if --model is a local directory.",
)
parser.add_argument(
"--upload-repo",
help="The Hugging Face repo to upload the model to.",
type=str,
default=None,
)
parser.add_argument(
"--de-quantize",
help="Generate a de-quantized model.",
action="store_true",
)
parser.add_argument(
"--export-gguf",
help="Export model weights in GGUF format.",
action="store_true",
)
parser.add_argument(
"--gguf-path",
help="Path to save the exported GGUF format model weights. Default is ggml-model-f16.gguf.",
default="ggml-model-f16.gguf",
type=str,
)
return parser.parse_args()
def main() -> None:
print("Loading pretrained model")
args = parse_arguments()
model_path = get_model_path(args.model)
model, config, tokenizer = fetch_from_hub(model_path)
model.freeze()
model = apply_lora_layers(model, args.adapter_path)
fused_linears = [
(n, m.to_linear())
for n, m in model.named_modules()
if isinstance(m, LoRALinear)
]
model.update_modules(tree_unflatten(fused_linears))
if args.de_quantize:
print("De-quantizing model")
model = dequantize(model)
weights = dict(tree_flatten(model.parameters()))
save_path = Path(args.save_path)
save_weights(save_path, weights)
py_files = glob.glob(str(model_path / "*.py"))
for file in py_files:
shutil.copy(file, save_path)
tokenizer.save_pretrained(save_path)
if args.de_quantize:
config.pop("quantization", None)
save_config(config, config_path=save_path / "config.json")
if args.export_gguf:
model_type = config["model_type"]
if model_type not in ["llama", "mixtral", "mistral"]:
raise ValueError(
f"Model type {model_type} not supported for GGUF conversion."
)
convert_to_gguf(model_path, weights, config, str(save_path / args.gguf_path))
if args.upload_repo is not None:
hf_path = args.hf_path or (
args.model if not Path(args.model).exists() else None
)
if hf_path is None:
raise ValueError(
"Must provide original Hugging Face repo to upload local model."
)
upload_to_hub(args.save_path, args.upload_repo, hf_path)
if __name__ == "__main__":
main()