mlx-examples/llms/mlx_lm/models/nemotron.py

218 lines
6.9 KiB
Python
Raw Normal View History

# Copyright © 2024 Apple Inc.
from dataclasses import dataclass
from functools import partial
from typing import Any, Dict, Optional, Union
import mlx.core as mx
import mlx.nn as nn
2024-11-01 03:02:34 +08:00
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
hidden_size: int
hidden_act: str
num_hidden_layers: int
intermediate_size: int
num_attention_heads: int
norm_eps: float
vocab_size: int
num_key_value_heads: int
head_dim: Optional[int] = None
max_position_embeddings: Optional[int] = None
attention_bias: bool = False
mlp_bias: bool = False
partial_rotary_factor: float = 0.5
rope_theta: float = 10000.0
rope_traditional: bool = False
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
tie_word_embeddings: bool = False
def __post_init__(self):
if self.rope_scaling:
if not "factor" in self.rope_scaling:
raise ValueError(f"rope_scaling must contain 'factor'")
rope_type = self.rope_scaling.get("type") or self.rope_scaling.get(
"rope_type"
)
if rope_type is None:
raise ValueError(
f"rope_scaling must contain either 'type' or 'rope_type'"
)
if rope_type not in ["linear"]:
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
@partial(mx.compile, shapeless=True)
def relu_squared(x):
return nn.relu(x).square()
class NemotronLayerNorm1P(nn.LayerNorm):
def __call__(self, x):
weight = self.weight + 1 if "weight" in self else None
bias = self.bias if "bias" in self else None
return mx.fast.layer_norm(x, weight, bias, self.eps)
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
self.head_dim = head_dim = args.head_dim or args.hidden_size // n_heads
self.partial_rotary_factor = args.partial_rotary_factor
self.scale = head_dim**-0.5
if hasattr(args, "attention_bias"):
attention_bias = args.attention_bias
else:
attention_bias = False
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias)
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attention_bias)
rope_scale = 1.0
if args.rope_scaling and args.rope_scaling["type"] == "linear":
assert isinstance(args.rope_scaling["factor"], float)
rope_scale = 1 / args.rope_scaling["factor"]
self.rope = nn.RoPE(
int(self.partial_rotary_factor * self.head_dim),
base=args.rope_theta,
scale=rope_scale,
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
B, L, _ = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
2024-11-01 03:02:34 +08:00
output = scaled_dot_product_attention(
queries, keys, values, cache=cache, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output)
class MLP(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.hidden_size
hidden_dim = args.intermediate_size
mlp_bias = args.mlp_bias
self.down_proj = nn.Linear(hidden_dim, dim, bias=mlp_bias)
self.up_proj = nn.Linear(dim, hidden_dim, bias=mlp_bias)
def __call__(self, x) -> mx.array:
return self.down_proj(relu_squared(self.up_proj(x)))
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.num_attention_heads = args.num_attention_heads
self.hidden_size = args.hidden_size
self.self_attn = Attention(args)
self.mlp = MLP(args)
self.input_layernorm = NemotronLayerNorm1P(args.hidden_size, eps=args.norm_eps)
self.post_attention_layernorm = NemotronLayerNorm1P(
args.hidden_size, eps=args.norm_eps
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
) -> mx.array:
r = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
out = h + r
return out
class NemotronModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.num_hidden_layers = args.num_hidden_layers
assert self.vocab_size > 0
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
]
self.norm = NemotronLayerNorm1P(args.hidden_size, eps=args.norm_eps)
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.embed_tokens(inputs)
mask = create_attention_mask(h, cache)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
h = layer(h, mask, cache=c)
return self.norm(h)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_type = args.model_type
self.model = NemotronModel(args)
if not args.tie_word_embeddings:
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
cache=None,
):
out = self.model(inputs, cache)
if self.args.tie_word_embeddings:
out = self.model.embed_tokens.as_linear(out)
else:
out = self.lm_head(out)
return out
@property
def layers(self):
return self.model.layers