mlx-examples/llms/mlx_lm/models/mamba2.py

465 lines
17 KiB
Python
Raw Normal View History

2024-10-02 18:48:15 +08:00
import math
from dataclasses import dataclass, field
from typing import Tuple, Union
2024-10-20 22:11:39 +08:00
import mlx.core as mx
2024-10-21 00:04:34 +08:00
import mlx.nn as nn
2024-10-20 22:11:39 +08:00
2024-10-02 18:48:15 +08:00
from .base import BaseModelArgs
from .cache import MambaCache
2024-10-02 18:48:15 +08:00
@dataclass
class ModelArgs(BaseModelArgs):
num_heads: int
head_dim: int
vocab_size: int
hidden_size: int
state_size: int
num_hidden_layers: int
layer_norm_epsilon: float
expand: int
conv_kernel: int
n_groups: int
use_bias: bool
use_conv_bias: bool
2024-10-21 00:04:34 +08:00
initializer_range: float
residual_in_fp32: bool
time_step_min: float
time_step_max: float
time_step_floor: float
rescale_prenorm_residual: bool
rms_norm: bool
chunk_size: int
tie_word_embeddings: bool
2024-11-06 23:35:46 +08:00
use_cache: bool = True
2024-10-02 18:48:15 +08:00
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
time_step_rank: Union[int, str] = "auto"
model_type: str = "mamba2"
2024-10-02 18:48:15 +08:00
def __post_init__(self):
2024-11-06 23:35:46 +08:00
if not hasattr(self, "intermediate_size"):
self.intermediate_size = int(self.expand * self.hidden_size)
2024-10-02 18:48:15 +08:00
if not hasattr(self, "head_dim"):
self.head_dim = self.hidden_size // self.num_heads
if self.time_step_rank == "auto":
self.time_step_rank = math.ceil(self.hidden_size / 16)
2024-10-24 22:16:42 +08:00
2024-10-31 04:23:13 +08:00
class MambaRMSNormGated(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
2024-11-06 23:35:46 +08:00
self.weight = mx.ones((hidden_size,))
2024-10-31 04:23:13 +08:00
self.variance_epsilon = eps
2024-11-06 23:35:46 +08:00
def __call__(self, hidden_states, gate=None):
2024-10-31 04:23:13 +08:00
if gate is not None:
2024-11-06 23:35:46 +08:00
hidden_states = hidden_states * nn.silu(gate)
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states
2024-11-06 23:35:46 +08:00
def silu(x):
return x * mx.sigmoid(x)
def ssd(x, A, B, C, chunk_size):
# Replace einsum operations with explicit reshape and matrix multiply
2024-11-06 23:35:46 +08:00
batch, seqlen, nheads, dim = x.shape
B = mx.expand_dims(B, axis=2)
C = mx.expand_dims(C, axis=2)
2024-11-06 23:35:46 +08:00
state = mx.zeros((batch, nheads, dim, B.shape[-1]))
outputs = []
2024-11-06 23:35:46 +08:00
for i in range(0, seqlen, chunk_size):
chunk = slice(i, min(i + chunk_size, seqlen))
dA = mx.exp(mx.expand_dims(A[chunk], axis=0))
2024-11-06 23:35:46 +08:00
# Replace einsum with explicit operations
x_chunk = x[:, chunk] # [batch, chunk_size, nheads, dim]
x_chunk = mx.transpose(x_chunk, [0, 2, 3, 1]) # [batch, nheads, dim, chunk_size]
B_chunk = B[:, chunk] # [batch, chunk_size, state_size]
dBx = mx.matmul(x_chunk, B_chunk) # [batch, nheads, dim, state_size]
2024-11-06 23:35:46 +08:00
state = state * mx.expand_dims(dA, axis=-1) + dBx
2024-11-06 23:35:46 +08:00
# Replace einsum with explicit operations
C_chunk = C[:, chunk] # [batch, chunk_size, state_size]
y = mx.matmul(state, mx.transpose(C_chunk, [0, 2, 1])) # [batch, nheads, dim, chunk_size]
y = mx.transpose(y, [0, 3, 1, 2]) # [batch, chunk_size, nheads, dim]
outputs.append(y)
2024-11-06 23:35:46 +08:00
return mx.concatenate(outputs, axis=1), state
# class DepthWiseConv1d(nn.Module):
# def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
# super().__init__()
# self.in_channels = in_channels
# self.out_channels = out_channels
# self.kernel_size = kernel_size
# self.padding = padding
# self.groups = groups if groups is not None else in_channels
# assert in_channels == out_channels, "In and out channels must be same for depthwise convolution"
# assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution"
# self.weight = mx.random.normal((in_channels, 1, kernel_size))
# self.bias = mx.zeros((out_channels,)) if bias else None
# def __call__(self, x: mx.array, cache=None) -> mx.array:
# B, L, C = x.shape
# K = self.kernel_size
# assert C == self.in_channels, f"Input channels {C} doesn't match expected {self.in_channels}"
# if cache is not None:
# if isinstance(cache.conv_states[0], type(None)):
# cache.conv_states[0] = mx.zeros((B, K-1, C))
# x = mx.concatenate([cache.conv_states[0], x], axis=1)
# outputs = []
# for c in range(C):
# # Input prep debug
# x_c = x[:, :, c]
# x_c = mx.expand_dims(x_c, axis=1)
# # Weight prep debug
# w_c = self.weight[c]
# if w_c.ndim == 2:
# w_c = mx.expand_dims(w_c, axis=0)
# elif w_c.ndim == 1:
# w_c = mx.expand_dims(mx.expand_dims(w_c, axis=0), axis=0)
# y_c = mx.conv_general(
# x_c,
# w_c,
# stride=1,
# padding=0
# )
# if self.bias is not None:
# y_c = y_c + self.bias[c]
# y_c = mx.squeeze(y_c, axis=1)
# outputs.append(y_c)
# # Output statistics
# y = mx.stack(outputs, axis=-1)
# # Cache update debug
# if cache is not None:
# cache.conv_states[0] = x[:, -K+1:, :] if x.shape[1] >= K else x
# return y
# class Mamba2Block(nn.Module):
# def __init__(self, args: ModelArgs):
# super().__init__()
# self.args = args
# d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
# self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias)
# conv_dim = args.intermediate_size + 2 * args.state_size
# self.conv1d = DepthWiseConv1d(
# in_channels=conv_dim,
# out_channels=conv_dim,
# kernel_size=args.conv_kernel,
# groups=conv_dim,
# bias=args.use_conv_bias,
# padding=args.conv_kernel - 1
# )
# self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range
# self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range
# self.D = mx.random.normal((args.num_heads,)) * args.initializer_range
# self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
# self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
# if args.rescale_prenorm_residual:
# layer_scale = math.sqrt(1.0 / args.num_hidden_layers)
# self.out_proj.weight = self.out_proj.weight * layer_scale
# def __call__(self, u: mx.array, cache=None):
# # Expect input to be shape [batch_size, 1, dim]
# batch_size, seq_len, dimension = u.shape
# assert seq_len == 1, "Input should be a single token"
# # Initialize cache if needed
# if cache.conv_states[0] is None:
# conv_dim = self.args.intermediate_size + 2 * self.args.state_size
# cache.conv_states[0] = mx.zeros((batch_size, self.args.conv_kernel - 1, conv_dim))
# if cache.ssm_states[0] is None:
# cache.ssm_states[0] = mx.zeros((
# batch_size,
# self.args.num_heads,
# self.args.head_dim,
# self.args.state_size
# ))
# # Project input
# zxbcdt = self.in_proj(u)
# # Split projections
# n_heads = self.args.num_heads
# z = zxbcdt[:, :, :self.args.intermediate_size]
# xBC = zxbcdt[:, :, self.args.intermediate_size:self.args.intermediate_size + 2*self.args.state_size + self.args.intermediate_size]
# dt = zxbcdt[:, :, -(n_heads):]
# # Time steps
# dt = mx.reshape(dt, (batch_size, n_heads))
# dt = mx.clip(nn.softplus(dt + self.dt_bias), self.args.time_step_min, self.args.time_step_max)
# dt = mx.maximum(dt, self.args.time_step_floor)
# # Convolution
# xBC = self.conv1d(xBC, cache=cache)
# xBC = silu(xBC)
# # Split states
# x = xBC[:, :, :self.args.intermediate_size]
# B = xBC[:, :, self.args.intermediate_size:self.args.intermediate_size + self.args.state_size]
# C = xBC[:, :, -self.args.state_size:]
# # Reshape for SSM
# x = mx.reshape(x, (batch_size, 1, n_heads, self.args.head_dim))
# x = mx.squeeze(x, axis=1)
# B = mx.reshape(B, (batch_size, 1, self.args.state_size))
# B = mx.broadcast_to(B, (batch_size, n_heads, self.args.state_size))
# B = mx.expand_dims(B, axis=2)
# C = mx.reshape(C, (batch_size, 1, self.args.state_size))
# C = mx.broadcast_to(C, (batch_size, n_heads, self.args.state_size))
# C = mx.expand_dims(C, axis=3)
# # SSM updates
# A = -mx.exp(self.A_log)
# dA = mx.exp(dt * mx.expand_dims(A, 0))
# dA = mx.expand_dims(mx.expand_dims(dA, -1), -1)
# # Update state
# x = mx.expand_dims(x, axis=3)
# dBx = mx.matmul(x, B)
# cache.ssm_states[0] = cache.ssm_states[0] * dA + dBx
# # Compute output
# y = mx.matmul(cache.ssm_states[0], C)
# y = mx.squeeze(y, axis=-1)
# y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1)
# y = mx.reshape(y, (batch_size, 1, n_heads * self.args.head_dim))
# y = self.norm(y + z)
# return self.out_proj(y)
class DepthWiseConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.padding = padding
self.groups = groups if groups is not None else in_channels
assert in_channels == out_channels, "In and out channels must be same for depthwise convolution"
assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution"
self.weight = mx.random.normal((in_channels, 1, kernel_size))
self.bias = mx.zeros((out_channels,)) if bias else None
def __call__(self, x: mx.array, cache=None) -> mx.array:
B, L, C = x.shape
K = self.kernel_size
assert C == self.in_channels, f"Input channels {C} doesn't match expected {self.in_channels}"
if cache is not None:
# Access conv_state directly from cache[0]
if cache[0] is None:
cache[0] = mx.zeros((B, K-1, C))
x = mx.concatenate([cache[0], x], axis=1)
outputs = []
for c in range(C):
x_c = x[:, :, c]
x_c = mx.expand_dims(x_c, axis=1)
w_c = self.weight[c]
if w_c.ndim == 2:
w_c = mx.expand_dims(w_c, axis=0)
elif w_c.ndim == 1:
w_c = mx.expand_dims(mx.expand_dims(w_c, axis=0), axis=0)
y_c = mx.conv_general(
x_c,
w_c,
stride=1,
padding=0
)
if self.bias is not None:
y_c = y_c + self.bias[c]
y_c = mx.squeeze(y_c, axis=1)
outputs.append(y_c)
y = mx.stack(outputs, axis=-1)
# Update cache directly using cache[0]
if cache is not None:
cache[0] = x[:, -K+1:, :] if x.shape[1] >= K else x
return y
2024-11-06 23:35:46 +08:00
class Mamba2Block(nn.Module):
2024-10-21 00:04:34 +08:00
def __init__(self, args: ModelArgs):
2024-10-02 18:48:15 +08:00
super().__init__()
2024-11-06 23:35:46 +08:00
self.args = args
2024-11-10 21:36:26 +08:00
2024-11-06 23:35:46 +08:00
d_in_proj = 2 * args.intermediate_size + 2 * args.state_size + args.num_heads
self.in_proj = nn.Linear(args.hidden_size, d_in_proj, bias=args.use_bias)
conv_dim = args.intermediate_size + 2 * args.state_size
self.conv1d = DepthWiseConv1d(
in_channels=conv_dim,
out_channels=conv_dim,
2024-11-06 23:35:46 +08:00
kernel_size=args.conv_kernel,
groups=conv_dim,
2024-11-06 23:35:46 +08:00
bias=args.use_conv_bias,
padding=args.conv_kernel - 1
2024-10-21 00:04:34 +08:00
)
self.dt_bias = mx.random.normal((args.num_heads,)) * args.initializer_range
self.A_log = mx.random.normal((args.num_heads,)) * args.initializer_range
self.D = mx.random.normal((args.num_heads,)) * args.initializer_range
2024-11-06 23:35:46 +08:00
self.norm = MambaRMSNormGated(args.intermediate_size, eps=args.layer_norm_epsilon)
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
2024-11-06 23:35:46 +08:00
if args.rescale_prenorm_residual:
layer_scale = math.sqrt(1.0 / args.num_hidden_layers)
self.out_proj.weight = self.out_proj.weight * layer_scale
def __call__(self, u: mx.array, cache=None):
batch_size, seq_len, dimension = u.shape
assert seq_len == 1, "Input should be a single token"
# Initialize cache states directly using indices
if cache[0] is None: # conv state
conv_dim = self.args.intermediate_size + 2 * self.args.state_size
cache[0] = mx.zeros((batch_size, self.args.conv_kernel - 1, conv_dim))
if cache[1] is None: # ssm state
cache[1] = mx.zeros((
2024-11-06 23:35:46 +08:00
batch_size,
self.args.num_heads,
self.args.head_dim,
self.args.state_size
))
2024-11-06 23:35:46 +08:00
zxbcdt = self.in_proj(u)
2024-11-10 21:36:26 +08:00
n_heads = self.args.num_heads
2024-11-06 23:35:46 +08:00
z = zxbcdt[:, :, :self.args.intermediate_size]
xBC = zxbcdt[:, :, self.args.intermediate_size:self.args.intermediate_size + 2*self.args.state_size + self.args.intermediate_size]
dt = zxbcdt[:, :, -(n_heads):]
dt = mx.reshape(dt, (batch_size, n_heads))
dt = mx.clip(nn.softplus(dt + self.dt_bias), self.args.time_step_min, self.args.time_step_max)
2024-11-06 23:35:46 +08:00
dt = mx.maximum(dt, self.args.time_step_floor)
xBC = self.conv1d(xBC, cache=cache)
2024-11-06 23:35:46 +08:00
xBC = silu(xBC)
2024-11-06 23:35:46 +08:00
x = xBC[:, :, :self.args.intermediate_size]
B = xBC[:, :, self.args.intermediate_size:self.args.intermediate_size + self.args.state_size]
C = xBC[:, :, -self.args.state_size:]
x = mx.reshape(x, (batch_size, 1, n_heads, self.args.head_dim))
x = mx.squeeze(x, axis=1)
B = mx.reshape(B, (batch_size, 1, self.args.state_size))
B = mx.broadcast_to(B, (batch_size, n_heads, self.args.state_size))
B = mx.expand_dims(B, axis=2)
C = mx.reshape(C, (batch_size, 1, self.args.state_size))
C = mx.broadcast_to(C, (batch_size, n_heads, self.args.state_size))
C = mx.expand_dims(C, axis=3)
2024-10-24 22:16:42 +08:00
A = -mx.exp(self.A_log)
2024-11-06 23:35:46 +08:00
dA = mx.exp(dt * mx.expand_dims(A, 0))
dA = mx.expand_dims(mx.expand_dims(dA, -1), -1)
x = mx.expand_dims(x, axis=3)
dBx = mx.matmul(x, B)
# Update ssm state directly using cache[1]
cache[1] = cache[1] * dA + dBx
y = mx.matmul(cache[1], C)
2024-11-06 23:35:46 +08:00
y = mx.squeeze(y, axis=-1)
y = y + x[:, :, :, 0] * mx.expand_dims(self.D, -1)
y = mx.reshape(y, (batch_size, 1, n_heads * self.args.head_dim))
2024-11-06 23:35:46 +08:00
y = self.norm(y + z)
return self.out_proj(y)
2024-10-02 18:48:15 +08:00
2024-10-21 00:04:34 +08:00
class ResidualBlock(nn.Module):
def __init__(self, args: ModelArgs):
2024-10-02 18:48:15 +08:00
super().__init__()
2024-11-06 23:35:46 +08:00
self.residual_in_fp32 = args.residual_in_fp32
self.mixer = Mamba2Block(args)
2024-10-12 02:53:29 +08:00
self.norm = nn.RMSNorm(args.hidden_size)
2024-10-02 18:48:15 +08:00
2024-11-06 23:35:46 +08:00
def __call__(self, x: mx.array, cache):
if self.residual_in_fp32:
x = x.astype(mx.float32)
normed = self.norm(x)
output = self.mixer(normed, cache)
return output + x
2024-11-06 23:35:46 +08:00
class Mamba2(nn.Module):
2024-10-02 18:48:15 +08:00
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
2024-10-21 00:04:34 +08:00
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
2024-10-02 18:48:15 +08:00
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
2024-11-06 23:35:46 +08:00
def __call__(self, x: mx.array, cache):
2024-10-21 00:04:34 +08:00
x = self.embeddings(x)
2024-10-02 18:48:15 +08:00
if cache is None:
2024-10-21 00:04:34 +08:00
cache = [None] * len(self.layers)
hidden = x
2024-11-06 23:35:46 +08:00
for layer, c in zip(self.layers, cache):
hidden = layer(hidden, c)
return self.norm_f(hidden)
2024-10-02 18:48:15 +08:00
2024-11-06 23:35:46 +08:00
2024-10-02 18:48:15 +08:00
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
2024-11-06 23:35:46 +08:00
self.model_type = args.model_type
self.backbone = Mamba2(args)
2024-10-02 18:48:15 +08:00
if not args.tie_word_embeddings:
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
2024-11-06 23:35:46 +08:00
def __call__(self, inputs: mx.array, cache=None):
hidden = self.backbone(inputs, cache)
2024-10-02 18:48:15 +08:00
if self.args.tie_word_embeddings:
logits = self.backbone.embeddings.as_linear(hidden)
2024-10-02 18:48:15 +08:00
else:
logits = self.lm_head(hidden)
2024-10-02 18:48:15 +08:00
return logits
2024-11-06 23:35:46 +08:00
def make_cache(self):
return [MambaCache() for _ in range(len(self.layers))]
2024-11-06 23:35:46 +08:00
2024-10-31 04:23:13 +08:00
@property
def layers(self):
return self.backbone.layers