mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-25 01:41:19 +08:00
53 lines
1.2 KiB
Python
53 lines
1.2 KiB
Python
![]() |
# Copyright © 2024 Apple Inc.
|
||
|
|
||
|
"""
|
||
|
An example of a multi-turn chat with prompt caching.
|
||
|
"""
|
||
|
|
||
|
from mlx_lm import generate, load
|
||
|
from mlx_lm.models.cache import load_prompt_cache, make_prompt_cache, save_prompt_cache
|
||
|
|
||
|
model, tokenizer = load("mlx-community/Mistral-7B-Instruct-v0.3-4bit")
|
||
|
|
||
|
# Make the initial prompt cache for the model
|
||
|
prompt_cache = make_prompt_cache(model)
|
||
|
|
||
|
# User turn
|
||
|
prompt = "Hi my name is <Name>."
|
||
|
messages = [{"role": "user", "content": prompt}]
|
||
|
prompt = tokenizer.apply_chat_template(
|
||
|
messages, tokenize=False, add_generation_prompt=True
|
||
|
)
|
||
|
|
||
|
# Assistant response
|
||
|
response = generate(
|
||
|
model,
|
||
|
tokenizer,
|
||
|
prompt=prompt,
|
||
|
verbose=True,
|
||
|
temp=0.0,
|
||
|
prompt_cache=prompt_cache,
|
||
|
)
|
||
|
|
||
|
# User turn
|
||
|
prompt = "What's my name?"
|
||
|
messages = [{"role": "user", "content": prompt}]
|
||
|
prompt = tokenizer.apply_chat_template(
|
||
|
messages, tokenize=False, add_generation_prompt=True
|
||
|
)
|
||
|
|
||
|
# Assistant response
|
||
|
response = generate(
|
||
|
model,
|
||
|
tokenizer,
|
||
|
prompt=prompt,
|
||
|
verbose=True,
|
||
|
prompt_cache=prompt_cache,
|
||
|
)
|
||
|
|
||
|
# Save the prompt cache to disk to reuse it at a later time
|
||
|
save_prompt_cache("mistral_prompt.safetensors", prompt_cache)
|
||
|
|
||
|
# Load the prompt cache from disk
|
||
|
prompt_cache = load_prompt_cache("mistral_prompt.safetensors")
|