2023-12-12 23:44:23 +08:00
|
|
|
# Copyright © 2023 Apple Inc.
|
|
|
|
|
|
|
|
import argparse
|
2023-12-22 04:59:37 +08:00
|
|
|
import copy
|
2023-12-15 07:30:32 +08:00
|
|
|
import glob
|
|
|
|
import json
|
2023-12-22 04:59:37 +08:00
|
|
|
import shutil
|
2023-12-12 23:44:23 +08:00
|
|
|
from pathlib import Path
|
2023-12-21 02:22:25 +08:00
|
|
|
|
2023-12-22 04:59:37 +08:00
|
|
|
import mlx.core as mx
|
|
|
|
import mlx.nn as nn
|
2023-12-21 02:22:25 +08:00
|
|
|
import numpy as np
|
2023-12-12 23:44:23 +08:00
|
|
|
import torch
|
2023-12-22 04:59:37 +08:00
|
|
|
from mixtral import Mixtral, ModelArgs
|
|
|
|
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
2023-12-12 23:44:23 +08:00
|
|
|
|
|
|
|
|
2023-12-22 04:59:37 +08:00
|
|
|
def convert(weights, config):
|
|
|
|
def convert_single(k, v):
|
|
|
|
v = v.to(torch.float16).numpy()
|
|
|
|
if "block_sparse_moe" not in k:
|
|
|
|
return [(k, v)]
|
|
|
|
if "gate" in k:
|
|
|
|
return [(k.replace("block_sparse_moe", "feed_forward"), v)]
|
2023-12-15 07:30:32 +08:00
|
|
|
|
2023-12-22 04:59:37 +08:00
|
|
|
# From: layers.N.block_sparse_moe.w
|
|
|
|
# To: layers.N.experts.M.w
|
|
|
|
num_experts = config["moe"]["num_experts"]
|
|
|
|
key_path = k.split(".")
|
|
|
|
v = np.split(v, num_experts, axis=0)
|
|
|
|
if key_path[-1] == "w2":
|
|
|
|
v = [u.T for u in v]
|
2023-12-15 07:30:32 +08:00
|
|
|
|
2023-12-22 04:59:37 +08:00
|
|
|
w_name = key_path.pop()
|
|
|
|
key_path[-1] = "feed_forward.experts"
|
|
|
|
return [
|
|
|
|
(".".join(key_path + [str(e), w_name, "weight"]), u)
|
|
|
|
for e, u in enumerate(v)
|
|
|
|
]
|
|
|
|
|
|
|
|
state = torch.load(tf)
|
|
|
|
weights = {}
|
|
|
|
for k, v in state.items():
|
|
|
|
weights.update(convert_single(k, v))
|
|
|
|
return weights
|
|
|
|
|
|
|
|
|
|
|
|
def quantize(weights, config, args):
|
|
|
|
quantized_config = copy.deepcopy(config)
|
|
|
|
|
|
|
|
# Load the model and update with the subset of weights:
|
|
|
|
config.pop("quantization", None)
|
|
|
|
model = Mixtral(ModelArgs(**config))
|
|
|
|
all_weights = dict(tree_flatten(model.parameters()))
|
|
|
|
|
|
|
|
weights = tree_map(mx.array, weights)
|
|
|
|
|
|
|
|
all_weights.update(weights)
|
|
|
|
all_weights = tree_unflatten(list(all_weights.items()))
|
|
|
|
model.update(all_weights)
|
|
|
|
|
|
|
|
# Quantize the model:
|
|
|
|
nn.QuantizedLinear.quantize_module(
|
|
|
|
model,
|
|
|
|
args.q_group_size,
|
|
|
|
args.q_bits,
|
|
|
|
# TODO: Quantize gate matrices when < 32 tiles supported
|
|
|
|
linear_class_predicate=lambda m: isinstance(m, nn.Linear)
|
|
|
|
and m.weight.shape[0] != 8,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Extract the subset of quantized weights:
|
|
|
|
all_weights = dict(tree_flatten(model.parameters()))
|
|
|
|
quantized_weights = {}
|
|
|
|
for k, v in all_weights.items():
|
|
|
|
if k not in weights:
|
|
|
|
continue
|
|
|
|
quantized_weights[k] = v
|
|
|
|
prefix = k.split(".")[:-1]
|
|
|
|
for qw in ["scales", "biases"]:
|
|
|
|
if (k := ".".join(prefix + [qw])) in all_weights:
|
|
|
|
quantized_weights[k] = all_weights[k]
|
|
|
|
|
|
|
|
# Update the config:
|
|
|
|
quantized_config["quantization"] = {
|
|
|
|
"group_size": args.q_group_size,
|
|
|
|
"bits": args.q_bits,
|
|
|
|
}
|
|
|
|
return quantized_weights, quantized_config
|
2023-12-15 07:30:32 +08:00
|
|
|
|
|
|
|
|
2023-12-12 23:44:23 +08:00
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(description="Convert Mixtral weights to MLX.")
|
|
|
|
parser.add_argument(
|
2023-12-22 04:59:37 +08:00
|
|
|
"--torch-path",
|
|
|
|
type=str,
|
|
|
|
default="Mixtral-8x7B-v0.1",
|
|
|
|
help="The path to the PyTorch model.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--mlx-path",
|
2023-12-12 23:44:23 +08:00
|
|
|
type=str,
|
2023-12-22 04:59:37 +08:00
|
|
|
default="mlx_model",
|
|
|
|
help="The path to save the MLX model.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"-q",
|
|
|
|
"--quantize",
|
|
|
|
help="Generate a quantized model.",
|
|
|
|
action="store_true",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--q_group_size",
|
|
|
|
help="Group size for quantization.",
|
|
|
|
type=int,
|
|
|
|
default=64,
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--q_bits",
|
|
|
|
help="Bits per weight for quantization.",
|
|
|
|
type=int,
|
|
|
|
default=4,
|
2023-12-12 23:44:23 +08:00
|
|
|
)
|
|
|
|
args = parser.parse_args()
|
2023-12-22 04:59:37 +08:00
|
|
|
torch_path = Path(args.torch_path)
|
|
|
|
mlx_path = Path(args.mlx_path)
|
|
|
|
mlx_path.mkdir(parents=True, exist_ok=True)
|
2023-12-15 07:30:32 +08:00
|
|
|
|
|
|
|
with open("params.json") as fid:
|
2023-12-22 04:59:37 +08:00
|
|
|
config = json.load(fid)
|
2023-12-15 07:30:32 +08:00
|
|
|
|
2023-12-22 04:59:37 +08:00
|
|
|
# Copy tokenizer
|
|
|
|
shutil.copyfile(
|
|
|
|
str(torch_path / "tokenizer.model"),
|
|
|
|
str(mlx_path / "tokenizer.model"),
|
|
|
|
)
|
|
|
|
|
|
|
|
# Convert and save model in shards
|
|
|
|
torch_files = glob.glob(str(torch_path / "consolidated.*.pt"))
|
2023-12-15 07:30:32 +08:00
|
|
|
torch_files = sorted(torch_files, key=lambda tf: int(tf.split(".")[-2]))
|
|
|
|
for e, tf in enumerate(torch_files):
|
|
|
|
print(f"[INFO] Converting file {e + 1}/{len(torch_files)}")
|
2023-12-22 04:59:37 +08:00
|
|
|
weights = convert(tf, config)
|
|
|
|
if args.quantize:
|
|
|
|
print("[INFO] Quantizing")
|
|
|
|
weights, config = quantize(weights, config, args)
|
|
|
|
np.savez(str(mlx_path / f"weights.{e}.npz"), **weights)
|
|
|
|
|
|
|
|
# Save updated config
|
|
|
|
with open(mlx_path / "config.json", "w") as f:
|
|
|
|
config["model_type"] = "mixtral"
|
|
|
|
json.dump(config, f, indent=4)
|