mlx-examples/mixtral/README.md

45 lines
1.1 KiB
Markdown
Raw Normal View History

2023-12-13 00:42:32 +08:00
## Mixtral 8x7B
2023-12-12 23:44:23 +08:00
Run the Mixtral[^mixtral] 8x7B mixture-of-experts (MoE) model in MLX on Apple silicon.
2023-12-13 00:41:28 +08:00
Note, for 16-bit precision this model needs a machine with substantial RAM (~100GB) to run.
2023-12-12 23:44:23 +08:00
### Setup
Install [Git Large File
Storage](https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage).
For example with Homebrew:
```
brew install git-lfs
```
2023-12-13 09:08:04 +08:00
Download the models from Hugging Face:
2023-12-12 23:44:23 +08:00
```
2023-12-15 07:30:32 +08:00
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/mistralai/Mixtral-8x7B-v0.1/
cd Mixtral-8x7B-v0.1/ && \
git lfs pull --include "consolidated.*.pt" && \
git lfs pull --include "tokenizer.model"
2023-12-12 23:44:23 +08:00
```
2023-12-13 04:15:50 +08:00
Now from `mlx-exmaples/mixtral` convert and save the weights as NumPy arrays so
2023-12-13 00:41:28 +08:00
MLX can read them:
2023-12-12 23:44:23 +08:00
```
2023-12-15 07:30:32 +08:00
python convert.py --model_path Mixtral-8x7B-v0.1/
2023-12-12 23:44:23 +08:00
```
2023-12-13 00:36:40 +08:00
The conversion script will save the converted weights in the same location.
2023-12-12 23:44:23 +08:00
### Generate
As easy as:
```
2023-12-15 07:30:32 +08:00
python mixtral.py --model_path Mixtral-8x7B-v0.1/
2023-12-12 23:44:23 +08:00
```
2023-12-15 07:30:32 +08:00
[^mixtral]: Refer to Mistral's [blog
post](https://mistral.ai/news/mixtral-of-experts/) for more details.