mlx-examples/lora/fuse.py

81 lines
2.5 KiB
Python
Raw Normal View History

# Copyright © 2023 Apple Inc.
import argparse
from pathlib import Path
import mlx.core as mx
import models
import utils
from mlx.utils import tree_flatten, tree_unflatten
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="LoRA or QLoRA finetuning.")
parser.add_argument(
"--model",
default="mlx_model",
help="The path to the local model directory or Hugging Face repo.",
)
parser.add_argument(
"--save-path",
default="lora_fused_model",
help="The path to save the fused model.",
)
parser.add_argument(
"--adapter-file",
type=str,
default="adapters.npz",
help="Path to the trained adapter weights (npz or safetensors).",
)
parser.add_argument(
"--hf-path",
help=(
"Path to the original Hugging Face model. This is "
"required for upload if --model is a local directory."
),
type=str,
default=None,
)
parser.add_argument(
"--upload-name",
help="The name of model to upload to Hugging Face MLX Community",
type=str,
default=None,
)
print("Loading pretrained model")
args = parser.parse_args()
model, tokenizer, config = models.load(args.model)
# Load adapters and get number of LoRA layers
adapters = list(mx.load(args.adapter_file).items())
lora_layers = len([m for m in adapters if "q_proj.lora_a" in m[0]])
# Freeze all layers other than LORA linears
model.freeze()
for l in model.model.layers[-lora_layers:]:
l.self_attn.q_proj = models.LoRALinear.from_linear(l.self_attn.q_proj)
l.self_attn.v_proj = models.LoRALinear.from_linear(l.self_attn.v_proj)
model.update(tree_unflatten(adapters))
fused_linears = [
(n, m.to_linear())
for n, m in model.named_modules()
if isinstance(m, models.LoRALinear)
]
model.update_modules(tree_unflatten(fused_linears))
weights = dict(tree_flatten(model.parameters()))
2024-01-10 21:49:32 +08:00
utils.save_model(args.save_path, weights, tokenizer, config)
if args.upload_name is not None:
hf_path = args.hf_path
if not Path(args.model).exists():
# If the model path doesn't exist, assume it's an HF repo
hf_path = args.model
elif hf_path is None:
raise ValueError(
"Must provide original Hugging Face repo to upload local model."
)
utils.upload_to_hub(args.save_path, args.upload_name, hf_path)