mlx-examples/llms/mlx_lm/models/cohere2.py

166 lines
6.2 KiB
Python
Raw Normal View History

2024-12-15 04:17:12 +08:00
from dataclasses import dataclass
from typing import Any, Optional
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
from .rope_utils import initialize_rope
from .cache import KVCache, RotatingKVCache
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
hidden_size: int
num_hidden_layers: int
intermediate_size: int
num_attention_heads: int
num_key_value_heads: int
rope_theta: float
vocab_size: int
layer_norm_eps: float
logit_scale: float
attention_bias: bool
# Additional Cohere2-specific arguments:
# rope_type and max_position_embeddings might influence the rope setup
rope_type: str = "default"
max_position_embeddings: int = 2048
sliding_window: Optional[int] = None,
sliding_window_pattern: Optional[int] = None,
order_of_interleaved_layers: Optional[int] = None,
use_cache: bool = True
class Cohere2Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.hidden_size
self.n_heads = args.num_attention_heads
self.n_kv_heads = args.num_key_value_heads
head_dim = dim // self.n_heads
self.scale = head_dim**-0.5
self.q_proj = nn.Linear(dim, self.n_heads * head_dim, bias=args.attention_bias)
self.k_proj = nn.Linear(dim, self.n_kv_heads * head_dim, bias=args.attention_bias)
self.v_proj = nn.Linear(dim, self.n_kv_heads * head_dim, bias=args.attention_bias)
self.o_proj = nn.Linear(self.n_heads * head_dim, dim, bias=args.attention_bias)
self.sliding_window = args.sliding_window # Not yet implemented :(
self.use_qk_norm = False # Assuming QK norm not used by Cohere2 (adjust if needed)
# Initialize RoPE for Cohere2
self.rope = initialize_rope(
dims=head_dim,
base=args.rope_theta,
traditional=True,
max_position_embeddings=args.max_position_embeddings,
)
def __call__(self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None, rope = True) -> mx.array:
B, L, D = x.shape
q = self.q_proj(x).reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
k = self.k_proj(x).reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
v = self.v_proj(x).reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
# Apply RoPE
# In Cohere2, the original code applies RoPE before caching updates. We replicate that:
if cache is not None:
if rope:
q = self.rope(q, offset=cache.offset)
k = self.rope(k, offset=cache.offset)
k, v = cache.update_and_fetch(k, v)
if rope:
k = k[:, :, -self.sliding_window:, :]
v = v[:, :, -self.sliding_window:, :]
elif rope:
q = self.rope(q)
k = self.rope(k)
# Compute attention
out = scaled_dot_product_attention(
q, k, v, cache=cache, scale=self.scale, mask=mask
)
out = out.transpose(0, 2, 1, 3).reshape(B, L, D)
return self.o_proj(out)
class Cohere2MLP(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.hidden_size
hdim = args.intermediate_size
self.gate_proj = nn.Linear(dim, hdim, bias=False)
self.up_proj = nn.Linear(dim, hdim, bias=False)
self.down_proj = nn.Linear(hdim, dim, bias=False)
def __call__(self, x: mx.array) -> mx.array:
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
class Cohere2TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.self_attn = Cohere2Attention(args)
self.mlp = Cohere2MLP(args)
self.input_layernorm = nn.LayerNorm(args.hidden_size, eps=args.layer_norm_eps, affine=True, bias=False)
def __call__(self, x: mx.array, mask: Optional[mx.array] = None, cache: Optional[Any] = None, rope = True) -> mx.array:
h = self.input_layernorm(x)
attn_h = self.self_attn(h, mask, cache, rope=rope)
ff_h = self.mlp(h)
return x + attn_h + ff_h
class Cohere2Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [Cohere2TransformerBlock(args) for _ in range(args.num_hidden_layers)]
self.norm = nn.LayerNorm(args.hidden_size, eps=args.layer_norm_eps, affine=True, bias=False)
self.sliding_window = args.sliding_window
self.sliding_window_pattern = args.sliding_window_pattern
def __call__(self, inputs: mx.array, cache: Optional[Any] = None) -> mx.array:
h = self.embed_tokens(inputs)
mask = create_attention_mask(h, cache, reference_cache_idx=self.sliding_window_pattern - 1)
sliding_window_mask = mask[:, -self.sliding_window:] if mask is not None else None
if cache is None:
cache = [None] * len(self.layers)
for i, (layer, c) in enumerate(zip(self.layers, cache)):
if self.sliding_window is not None:
index = i % self.sliding_window_pattern
if index < self.sliding_window_pattern - 1:
h = layer(h, mask=sliding_window_mask, cache=c)
else:
h = layer(h, mask=mask, cache=c, rope=False)
return self.norm(h)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.model_type = args.model_type
self.model = Cohere2Model(args)
self.args = args
def __call__(self, inputs: mx.array, cache=None):
out = self.model(inputs, cache)
out = self.model.embed_tokens.as_linear(out) * self.args.logit_scale
return out
@property
def layers(self):
return self.model.layers
def make_cache(self):
caches = []
for i in range(self.args.num_hidden_layers):
if i % self.args.sliding_window_pattern == self.args.sliding_window_pattern - 1:
caches.append(KVCache())
else:
caches.append(RotatingKVCache(max_size=self.args.sliding_window, keep=0))
return caches