mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00
89 lines
2.4 KiB
Python
89 lines
2.4 KiB
Python
![]() |
import argparse
|
||
|
import torch
|
||
|
import time
|
||
|
|
||
|
import mnist
|
||
|
|
||
|
|
||
|
class MLP(torch.nn.Module):
|
||
|
def __init__(self, num_layers, input_dim, hidden_dim, output_dim):
|
||
|
super().__init__()
|
||
|
layer_sizes = [hidden_dim] * num_layers
|
||
|
self.layers = torch.nn.ModuleList(
|
||
|
[
|
||
|
torch.nn.Linear(idim, odim)
|
||
|
for idim, odim in zip(
|
||
|
[input_dim] + layer_sizes, layer_sizes + [output_dim]
|
||
|
)
|
||
|
]
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.layers[0](x)
|
||
|
for l in self.layers[1:]:
|
||
|
x = l(x.relu())
|
||
|
return x
|
||
|
|
||
|
|
||
|
def loss_fn(model, X, y):
|
||
|
logits = model(X)
|
||
|
return torch.nn.functional.cross_entropy(logits, y)
|
||
|
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def eval_fn(model, X, y):
|
||
|
logits = model(X)
|
||
|
return torch.mean((logits.argmax(-1) == y).float())
|
||
|
|
||
|
|
||
|
def batch_iterate(batch_size, X, y, device):
|
||
|
perm = torch.randperm(len(y), device=device)
|
||
|
for s in range(0, len(y), batch_size):
|
||
|
ids = perm[s : s + batch_size]
|
||
|
yield X[ids], y[ids]
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser("Train a simple MLP on MNIST with PyTorch.")
|
||
|
parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
if not args.gpu:
|
||
|
torch.set_num_threads(1)
|
||
|
device = "cpu"
|
||
|
else:
|
||
|
device = "mps"
|
||
|
seed = 0
|
||
|
num_layers = 2
|
||
|
hidden_dim = 32
|
||
|
num_classes = 10
|
||
|
batch_size = 256
|
||
|
num_epochs = 10
|
||
|
learning_rate = 1e-1
|
||
|
|
||
|
# Load the data
|
||
|
def to_tensor(x):
|
||
|
if x.dtype != "uint32":
|
||
|
return torch.from_numpy(x).to(device)
|
||
|
else:
|
||
|
return torch.from_numpy(x.astype(int)).to(device)
|
||
|
|
||
|
train_images, train_labels, test_images, test_labels = map(to_tensor, mnist.mnist())
|
||
|
|
||
|
# Load the model
|
||
|
model = MLP(num_layers, train_images.shape[-1], hidden_dim, num_classes).to(device)
|
||
|
opt = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.0)
|
||
|
|
||
|
for e in range(num_epochs):
|
||
|
tic = time.perf_counter()
|
||
|
for X, y in batch_iterate(batch_size, train_images, train_labels, device):
|
||
|
opt.zero_grad()
|
||
|
loss_fn(model, X, y).backward()
|
||
|
opt.step()
|
||
|
accuracy = eval_fn(model, test_images, test_labels)
|
||
|
toc = time.perf_counter()
|
||
|
print(
|
||
|
f"Epoch {e}: Test accuracy {accuracy.item():.3f},"
|
||
|
f" Time {toc - tic:.3f} (s)"
|
||
|
)
|