2024-10-02 18:48:15 +08:00
|
|
|
# Copyright © 2024 Apple Inc.
|
|
|
|
|
|
|
|
import math
|
|
|
|
from dataclasses import dataclass, field
|
2024-10-20 22:11:39 +08:00
|
|
|
from typing import Tuple, Union, Optional
|
2024-10-02 18:48:15 +08:00
|
|
|
|
|
|
|
import mlx.nn as nn
|
2024-10-20 22:11:39 +08:00
|
|
|
import mlx.core as mx
|
|
|
|
|
2024-10-02 18:48:15 +08:00
|
|
|
from .base import BaseModelArgs
|
2024-10-20 22:11:39 +08:00
|
|
|
from .cache import Mamba2Cache
|
2024-10-02 18:48:15 +08:00
|
|
|
|
2024-10-17 03:09:30 +08:00
|
|
|
# python -m mlx_lm.generate --model rokyang/mamba2-130m-hf --prompt "hello how are you."
|
2024-10-02 18:48:15 +08:00
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class ModelArgs(BaseModelArgs):
|
2024-10-17 03:09:30 +08:00
|
|
|
num_heads: int
|
|
|
|
head_dim: int
|
|
|
|
vocab_size: int
|
|
|
|
hidden_size: int
|
|
|
|
state_size: int
|
|
|
|
num_hidden_layers: int
|
|
|
|
layer_norm_epsilon: float
|
|
|
|
expand: int
|
|
|
|
conv_kernel: int
|
|
|
|
n_groups: int
|
|
|
|
use_bias: bool
|
|
|
|
use_conv_bias: bool
|
|
|
|
initializer_range: float
|
|
|
|
residual_in_fp32: bool
|
|
|
|
time_step_min: float
|
|
|
|
time_step_max: float
|
|
|
|
time_step_floor: float
|
|
|
|
rescale_prenorm_residual: bool
|
|
|
|
use_cache: bool
|
|
|
|
rms_norm: bool
|
|
|
|
chunk_size: int
|
|
|
|
tie_word_embeddings: bool
|
2024-10-02 18:48:15 +08:00
|
|
|
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
|
2024-10-17 03:09:30 +08:00
|
|
|
time_step_rank: Union[int, str] = "auto"
|
|
|
|
model_type: str = "mamba2"
|
2024-10-02 18:48:15 +08:00
|
|
|
|
|
|
|
def __post_init__(self):
|
|
|
|
if not hasattr(self, "intermediate_size"):
|
|
|
|
self.intermediate_size = int(self.expand * self.hidden_size)
|
|
|
|
if not hasattr(self, "head_dim"):
|
|
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
|
|
if self.time_step_rank == "auto":
|
|
|
|
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
|
|
|
|
|
|
|
class MambaRMSNormGated(nn.Module):
|
|
|
|
def __init__(self, hidden_size, eps=1e-6):
|
|
|
|
super().__init__()
|
|
|
|
self.weight = mx.ones((hidden_size,))
|
|
|
|
self.variance_epsilon = eps
|
|
|
|
|
|
|
|
def __call__(self, hidden_states, gate=None):
|
|
|
|
if gate is not None:
|
|
|
|
hidden_states = hidden_states * nn.silu(gate)
|
|
|
|
variance = mx.mean(hidden_states ** 2, axis=-1, keepdims=True)
|
|
|
|
hidden_states = hidden_states * mx.rsqrt(variance + self.variance_epsilon)
|
|
|
|
return self.weight * hidden_states
|
2024-10-03 01:19:32 +08:00
|
|
|
|
2024-10-20 22:11:39 +08:00
|
|
|
|
2024-10-03 01:19:32 +08:00
|
|
|
class DepthWiseConv1d(nn.Module):
|
|
|
|
def __init__(self, in_channels, out_channels, kernel_size, bias=True, groups=None, padding=0):
|
|
|
|
super().__init__()
|
2024-10-12 02:53:29 +08:00
|
|
|
self.in_channels = in_channels
|
|
|
|
self.out_channels = out_channels
|
2024-10-03 01:19:32 +08:00
|
|
|
self.kernel_size = kernel_size
|
|
|
|
self.padding = padding
|
2024-10-12 02:53:29 +08:00
|
|
|
self.groups = groups if groups is not None else in_channels
|
|
|
|
|
|
|
|
# Ensure in_channels and out_channels are the same for depthwise conv
|
|
|
|
assert in_channels == out_channels, "In and out channels must be the same for depthwise convolution"
|
|
|
|
# Ensure groups is equal to in_channels for depthwise conv
|
|
|
|
assert self.groups == in_channels, "Groups must be equal to in_channels for depthwise convolution"
|
2024-10-03 01:19:32 +08:00
|
|
|
|
2024-10-12 02:53:29 +08:00
|
|
|
# Initialize weight with shape (out_channels, kernel_size, 1)
|
|
|
|
self.weight = mx.random.normal((out_channels, kernel_size, 1))
|
|
|
|
self.bias = mx.zeros((out_channels,)) if bias else None
|
2024-10-03 01:19:32 +08:00
|
|
|
|
|
|
|
def __call__(self, x, cache=None):
|
|
|
|
B, L, C = x.shape
|
2024-10-12 02:53:29 +08:00
|
|
|
_, K, _ = self.weight.shape
|
2024-10-03 01:19:32 +08:00
|
|
|
|
|
|
|
if cache is not None:
|
|
|
|
x = mx.concatenate([cache, x], axis=1)
|
|
|
|
else:
|
2024-10-12 02:53:29 +08:00
|
|
|
x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)])
|
2024-10-03 01:19:32 +08:00
|
|
|
|
2024-10-12 02:53:29 +08:00
|
|
|
y = mx.conv_general(x, self.weight, groups=self.groups)
|
2024-10-03 01:19:32 +08:00
|
|
|
|
|
|
|
if self.bias is not None:
|
|
|
|
y = y + self.bias
|
|
|
|
|
2024-10-12 02:53:29 +08:00
|
|
|
return y, x[:, -K + 1 :, :]
|
2024-10-02 18:48:15 +08:00
|
|
|
|
|
|
|
|
|
|
|
class Mamba2Mixer(nn.Module):
|
2024-10-20 22:11:39 +08:00
|
|
|
def __init__(self, args, layer_idx):
|
2024-10-02 18:48:15 +08:00
|
|
|
super().__init__()
|
2024-10-20 22:11:39 +08:00
|
|
|
self.layer_idx = layer_idx
|
2024-10-12 02:53:29 +08:00
|
|
|
self.hidden_size = args.hidden_size
|
2024-10-20 22:11:39 +08:00
|
|
|
self.intermediate_size = args.intermediate_size
|
2024-10-02 18:48:15 +08:00
|
|
|
self.num_heads = args.num_heads
|
2024-10-20 22:11:39 +08:00
|
|
|
self.head_dim = args.head_dim
|
|
|
|
self.ssm_state_size = args.state_size
|
2024-10-02 18:48:15 +08:00
|
|
|
self.n_groups = args.n_groups
|
2024-10-20 22:11:39 +08:00
|
|
|
self.conv_kernel_size = args.conv_kernel
|
|
|
|
self.use_conv_bias = args.use_conv_bias
|
|
|
|
self.use_bias = args.use_bias
|
|
|
|
self.time_step_min = args.time_step_min
|
|
|
|
self.time_step_max = args.time_step_max
|
|
|
|
self.chunk_size = args.chunk_size
|
|
|
|
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
|
2024-10-12 02:53:29 +08:00
|
|
|
|
|
|
|
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
|
|
|
|
self.in_proj = nn.Linear(
|
|
|
|
self.hidden_size,
|
|
|
|
projection_size,
|
|
|
|
bias=args.use_bias
|
2024-10-02 18:48:15 +08:00
|
|
|
)
|
2024-10-20 22:11:39 +08:00
|
|
|
self.conv1d = nn.Conv1d(
|
|
|
|
self.conv_dim,
|
|
|
|
self.conv_dim,
|
|
|
|
self.conv_kernel_size,
|
|
|
|
groups=self.conv_dim,
|
|
|
|
bias=self.use_conv_bias
|
|
|
|
)
|
|
|
|
self.act = nn.SiLU()
|
2024-10-02 18:48:15 +08:00
|
|
|
self.norm = MambaRMSNormGated(self.intermediate_size, eps=args.layer_norm_epsilon)
|
2024-10-20 22:11:39 +08:00
|
|
|
self.out_proj = nn.Linear(
|
|
|
|
self.intermediate_size,
|
|
|
|
self.hidden_size,
|
|
|
|
bias=self.use_bias
|
|
|
|
)
|
2024-10-02 18:48:15 +08:00
|
|
|
|
2024-10-20 22:11:39 +08:00
|
|
|
self.A_log = mx.zeros(self.num_heads)
|
|
|
|
self.D = mx.ones(self.num_heads)
|
|
|
|
self.dt_bias = mx.zeros(self.num_heads)
|
|
|
|
|
|
|
|
def __call__(self, input_states, cache):
|
|
|
|
batch_size, seq_len, _ = input_states.shape
|
|
|
|
dtype = input_states.dtype
|
2024-10-12 02:53:29 +08:00
|
|
|
|
2024-10-20 22:11:39 +08:00
|
|
|
projected_states = self.in_proj(input_states)
|
2024-10-12 03:36:41 +08:00
|
|
|
|
2024-10-20 22:11:39 +08:00
|
|
|
# Calculate the sizes of each split
|
|
|
|
total_size = projected_states.shape[-1]
|
|
|
|
remaining_size = total_size - self.intermediate_size - self.conv_dim - self.num_heads
|
|
|
|
d_mlp = remaining_size // 2
|
|
|
|
sizes = [
|
|
|
|
d_mlp,
|
|
|
|
d_mlp,
|
|
|
|
self.intermediate_size,
|
|
|
|
self.conv_dim,
|
|
|
|
self.num_heads
|
|
|
|
]
|
2024-10-12 03:36:41 +08:00
|
|
|
|
2024-10-20 22:11:39 +08:00
|
|
|
# Perform the split operation
|
|
|
|
split_result = mx.split(projected_states, sizes, axis=-1)
|
2024-10-17 03:09:30 +08:00
|
|
|
|
2024-10-20 22:11:39 +08:00
|
|
|
# Print debug information
|
|
|
|
print(f"Number of split parts: {len(split_result)}")
|
|
|
|
print(f"Shapes of split parts: {[part.shape for part in split_result]}")
|
2024-10-12 03:36:41 +08:00
|
|
|
|
2024-10-20 22:11:39 +08:00
|
|
|
# Flexibly handle the split result
|
|
|
|
_, _, _, gate, hidden_states, dt = split_result
|
2024-10-02 18:48:15 +08:00
|
|
|
|
2024-10-20 22:11:39 +08:00
|
|
|
if cache is not None:
|
|
|
|
conv_state = cache.conv_states[self.layer_idx]
|
|
|
|
if conv_state is None:
|
|
|
|
# Initialize conv_state if it's None
|
|
|
|
conv_state = mx.zeros((batch_size, 1, self.conv_kernel_size, hidden_states.shape[-1]))
|
2024-10-12 03:36:41 +08:00
|
|
|
|
2024-10-20 22:11:39 +08:00
|
|
|
conv_state = mx.roll(conv_state, -1, -2) # Roll along the kernel dimension
|
2024-10-12 03:36:41 +08:00
|
|
|
|
2024-10-20 22:11:39 +08:00
|
|
|
# Reshape hidden_states to match conv_state dimensions
|
|
|
|
hidden_states_reshaped = hidden_states[:, None, None, :]
|
2024-10-12 03:36:41 +08:00
|
|
|
|
2024-10-20 22:11:39 +08:00
|
|
|
conv_state = mx.concat([conv_state[:, :, :-1, :], hidden_states_reshaped], axis=-2)
|
|
|
|
cache.conv_states[self.layer_idx] = conv_state
|
2024-10-12 03:36:41 +08:00
|
|
|
|
2024-10-20 22:11:39 +08:00
|
|
|
# Adjust the convolution operation
|
|
|
|
hidden_states = mx.sum(conv_state * self.conv1d.weight[:, :, None, :], axis=(-2, -1))
|
|
|
|
|
|
|
|
if self.use_conv_bias:
|
|
|
|
hidden_states += self.conv1d.bias
|
|
|
|
hidden_states = self.act(hidden_states)[:, None, :]
|
|
|
|
else:
|
|
|
|
hidden_states = hidden_states.transpose(0, 2, 1)
|
|
|
|
hidden_states = self.act(self.conv1d(hidden_states)).transpose(0, 2, 1)
|
|
|
|
|
|
|
|
hidden_states, B, C = mx.split(hidden_states, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], axis=-1)
|
|
|
|
|
|
|
|
A = -mx.exp(self.A_log.astype(mx.float32))
|
|
|
|
dt = nn.softplus(dt + self.dt_bias)
|
|
|
|
dt = mx.clip(dt, self.time_step_min, self.time_step_max)
|
|
|
|
|
|
|
|
hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).astype(mx.float32)
|
|
|
|
B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).astype(mx.float32)
|
|
|
|
C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).astype(mx.float32)
|
|
|
|
|
|
|
|
B = mx.repeat(B, repeats=self.num_heads // self.n_groups, axis=2)
|
|
|
|
C = mx.repeat(C, repeats=self.num_heads // self.n_groups, axis=2)
|
|
|
|
|
|
|
|
if cache is not None and cache.seqlen_offset > 0:
|
|
|
|
ssm_state = cache.ssm_states[self.layer_idx]
|
|
|
|
dA = mx.exp(dt[:, None, :, None] * A[None, :, None, None])
|
|
|
|
dB = dt[:, None, :, None] * B
|
|
|
|
dBx = dB * hidden_states[:, :, :, None]
|
|
|
|
ssm_state = ssm_state * dA + dBx
|
|
|
|
cache.ssm_states[self.layer_idx] = ssm_state
|
|
|
|
|
|
|
|
y = mx.sum(ssm_state * C[:, None, :, :], axis=-1)
|
|
|
|
D = self.D[None, :, None].expand(self.D.shape[0], self.head_dim)
|
|
|
|
y = y + hidden_states * D
|
|
|
|
|
|
|
|
y = y.reshape(batch_size, -1)[:, None, :]
|
|
|
|
else:
|
|
|
|
# Implement chunked computation here (simplified version)
|
|
|
|
pad_size = self.chunk_size - (seq_len % self.chunk_size)
|
|
|
|
hidden_states_padded = mx.pad(hidden_states, [(0, 0), (0, pad_size), (0, 0), (0, 0)])
|
|
|
|
B_padded = mx.pad(B, [(0, 0), (0, pad_size), (0, 0), (0, 0)])
|
|
|
|
C_padded = mx.pad(C, [(0, 0), (0, pad_size), (0, 0), (0, 0)])
|
|
|
|
|
|
|
|
chunks = seq_len // self.chunk_size + (1 if pad_size > 0 else 0)
|
|
|
|
y_list = []
|
|
|
|
ssm_state = mx.zeros((batch_size, self.num_heads, self.head_dim, self.ssm_state_size))
|
|
|
|
|
|
|
|
for i in range(chunks):
|
|
|
|
chunk_start = i * self.chunk_size
|
|
|
|
chunk_end = (i + 1) * self.chunk_size
|
|
|
|
chunk_h = hidden_states_padded[:, chunk_start:chunk_end]
|
|
|
|
chunk_B = B_padded[:, chunk_start:chunk_end]
|
|
|
|
chunk_C = C_padded[:, chunk_start:chunk_end]
|
|
|
|
|
|
|
|
chunk_dt = dt[:, chunk_start:chunk_end]
|
|
|
|
dA = mx.exp(chunk_dt[:, :, None, None] * A[None, None, :, None])
|
|
|
|
dB = chunk_dt[:, :, None, None] * chunk_B
|
|
|
|
dBx = dB * chunk_h[:, :, :, None]
|
|
|
|
|
|
|
|
chunk_y = mx.zeros_like(chunk_h)
|
|
|
|
for j in range(self.chunk_size):
|
|
|
|
ssm_state = ssm_state * dA[:, j] + dBx[:, j]
|
|
|
|
chunk_y[:, j] = mx.sum(ssm_state * chunk_C[:, j], axis=-1)
|
|
|
|
|
|
|
|
y_list.append(chunk_y)
|
|
|
|
|
|
|
|
y = mx.concat(y_list, axis=1)
|
|
|
|
if pad_size > 0:
|
|
|
|
y = y[:, :seq_len]
|
|
|
|
|
|
|
|
D = self.D[None, :, None].expand(self.D.shape[0], self.head_dim)
|
|
|
|
y = y + hidden_states * D
|
|
|
|
y = y.reshape(batch_size, seq_len, -1)
|
|
|
|
|
|
|
|
y = self.norm(y, gate)
|
|
|
|
contextualized_states = self.out_proj(y.astype(dtype))
|
|
|
|
|
|
|
|
return contextualized_states
|
2024-10-02 18:48:15 +08:00
|
|
|
|
|
|
|
|
|
|
|
class Mamba2Block(nn.Module):
|
2024-10-20 22:11:39 +08:00
|
|
|
def __init__(self, args: ModelArgs, layer_idx: int):
|
2024-10-02 18:48:15 +08:00
|
|
|
super().__init__()
|
2024-10-20 22:11:39 +08:00
|
|
|
self.mixer = Mamba2Mixer(args, layer_idx)
|
2024-10-12 02:53:29 +08:00
|
|
|
self.norm = nn.RMSNorm(args.hidden_size)
|
2024-10-02 18:48:15 +08:00
|
|
|
|
2024-10-12 02:53:29 +08:00
|
|
|
def __call__(self, x: mx.array, cache):
|
|
|
|
return self.mixer(self.norm(x), cache) + x
|
2024-10-02 18:48:15 +08:00
|
|
|
|
|
|
|
|
|
|
|
class Mamba2(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.args = args
|
|
|
|
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
2024-10-20 22:11:39 +08:00
|
|
|
self.layers = [Mamba2Block(args, idx) for idx in range(args.num_hidden_layers)]
|
2024-10-02 18:48:15 +08:00
|
|
|
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
inputs: mx.array,
|
|
|
|
cache=None
|
|
|
|
):
|
|
|
|
hidden_states = self.embeddings(inputs)
|
|
|
|
|
|
|
|
if cache is None:
|
|
|
|
cache = Mamba2Cache(len(self.layers))
|
|
|
|
|
|
|
|
for i, layer in enumerate(self.layers):
|
|
|
|
hidden_states = layer(hidden_states, cache[i])
|
|
|
|
|
|
|
|
hidden_states = self.norm_f(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class Model(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.args = args
|
|
|
|
self.model_type = args.model_type
|
|
|
|
self.backbone = Mamba2(args)
|
|
|
|
if not args.tie_word_embeddings:
|
|
|
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
|
|
|
2024-10-12 02:53:29 +08:00
|
|
|
def __call__(self, inputs: mx.array, cache=None):
|
2024-10-02 18:48:15 +08:00
|
|
|
B, T = inputs.shape
|
|
|
|
|
|
|
|
x = self.backbone(inputs, cache)
|
|
|
|
|
|
|
|
if self.args.tie_word_embeddings:
|
|
|
|
logits = self.backbone.embeddings.as_linear(x)
|
|
|
|
else:
|
|
|
|
logits = self.lm_head(x)
|
2024-10-12 02:53:29 +08:00
|
|
|
|
2024-10-20 22:11:39 +08:00
|
|
|
print(logits)
|
|
|
|
print(logits.shape)
|
|
|
|
|
2024-10-02 18:48:15 +08:00
|
|
|
return logits
|
2024-10-12 02:53:29 +08:00
|
|
|
|
|
|
|
def sanitize(self, weights):
|
2024-10-02 18:48:15 +08:00
|
|
|
for k, v in weights.items():
|
|
|
|
if "conv1d.weight" in k and v.ndim == 3:
|
|
|
|
weights[k] = v.moveaxis(2, 1)
|
|
|
|
return weights
|
2024-10-12 02:53:29 +08:00
|
|
|
|
2024-10-20 22:11:39 +08:00
|
|
|
def make_cache(self):
|
|
|
|
return [Mamba2Cache(self.args.num_hidden_layers) for _ in range(len(self.layers))]
|
2024-10-12 02:53:29 +08:00
|
|
|
|
2024-10-02 18:48:15 +08:00
|
|
|
@property
|
|
|
|
def layers(self):
|
|
|
|
return self.backbone.layers
|