2024-03-02 02:28:35 +08:00
|
|
|
# Copyright © 2024 Apple Inc.
|
|
|
|
|
|
|
|
import inspect
|
|
|
|
from dataclasses import dataclass
|
|
|
|
from typing import Dict, Optional, Tuple, Union
|
|
|
|
|
|
|
|
import mlx.core as mx
|
|
|
|
import mlx.nn as nn
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class TextConfig:
|
|
|
|
model_type: str
|
|
|
|
hidden_size: int = 4096
|
|
|
|
num_hidden_layers: int = 32
|
|
|
|
intermediate_size: int = 11008
|
|
|
|
num_attention_heads: int = 32
|
|
|
|
rms_norm_eps: float = 1e-6
|
|
|
|
vocab_size: int = 32000
|
|
|
|
num_key_value_heads: int = None
|
|
|
|
rope_theta: float = 10000
|
|
|
|
rope_traditional: bool = False
|
|
|
|
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_dict(cls, params):
|
|
|
|
return cls(
|
|
|
|
**{
|
|
|
|
k: v
|
|
|
|
for k, v in params.items()
|
|
|
|
if k in inspect.signature(cls).parameters
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
def __post_init__(self):
|
|
|
|
if self.num_key_value_heads is None:
|
|
|
|
self.num_key_value_heads = self.num_attention_heads
|
|
|
|
|
|
|
|
if self.rope_scaling:
|
|
|
|
required_keys = {"factor", "type"}
|
|
|
|
if not all(key in self.rope_scaling for key in required_keys):
|
|
|
|
raise ValueError(f"rope_scaling must contain keys {required_keys}")
|
|
|
|
|
|
|
|
if self.rope_scaling["type"] != "linear":
|
|
|
|
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
|
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
def __init__(self, config: TextConfig):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
dim = config.hidden_size
|
|
|
|
self.n_heads = n_heads = config.num_attention_heads
|
|
|
|
self.n_kv_heads = n_kv_heads = config.num_key_value_heads
|
|
|
|
|
|
|
|
self.repeats = n_heads // n_kv_heads
|
|
|
|
|
|
|
|
head_dim = config.hidden_size // n_heads
|
|
|
|
self.scale = head_dim**-0.5
|
|
|
|
|
|
|
|
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
|
|
|
|
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
|
|
|
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
|
|
|
|
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
|
|
|
|
|
|
|
|
rope_scale = (
|
|
|
|
1 / config.rope_scaling["factor"]
|
|
|
|
if config.rope_scaling is not None
|
|
|
|
and config.rope_scaling["type"] == "linear"
|
|
|
|
else 1
|
|
|
|
)
|
|
|
|
self.rope = nn.RoPE(
|
|
|
|
head_dim,
|
|
|
|
traditional=config.rope_traditional,
|
|
|
|
base=config.rope_theta,
|
|
|
|
scale=rope_scale,
|
|
|
|
)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
x: mx.array,
|
|
|
|
mask: Optional[mx.array] = None,
|
|
|
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
|
|
) -> mx.array:
|
|
|
|
B, L, D = x.shape
|
|
|
|
|
|
|
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
|
|
|
|
|
|
# Prepare the queries, keys and values for the attention computation
|
|
|
|
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
|
|
|
|
if cache is not None:
|
|
|
|
key_cache, value_cache = cache
|
|
|
|
queries = self.rope(queries, offset=key_cache.shape[2])
|
|
|
|
keys = self.rope(keys, offset=key_cache.shape[2])
|
|
|
|
keys = mx.concatenate([key_cache, keys], axis=2)
|
|
|
|
values = mx.concatenate([value_cache, values], axis=2)
|
|
|
|
else:
|
|
|
|
queries = self.rope(queries)
|
|
|
|
keys = self.rope(keys)
|
|
|
|
|
2024-03-23 22:13:51 +08:00
|
|
|
output = mx.fast.scaled_dot_product_attention(
|
|
|
|
queries, keys, values, scale=self.scale, mask=mask
|
|
|
|
)
|
|
|
|
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
|
2024-03-02 02:28:35 +08:00
|
|
|
return self.o_proj(output), (keys, values)
|
|
|
|
|
|
|
|
|
|
|
|
class MLP(nn.Module):
|
|
|
|
def __init__(self, dim, hidden_dim):
|
|
|
|
super().__init__()
|
|
|
|
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
|
|
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
|
|
|
|
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
|
|
|
|
|
|
|
|
def __call__(self, x) -> mx.array:
|
|
|
|
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
|
|
def __init__(self, config: TextConfig):
|
|
|
|
super().__init__()
|
|
|
|
self.num_attention_heads = config.num_attention_heads
|
|
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.self_attn = Attention(config)
|
|
|
|
self.mlp = MLP(config.hidden_size, config.intermediate_size)
|
2024-03-23 22:13:51 +08:00
|
|
|
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
self.post_attention_layernorm = nn.RMSNorm(
|
2024-03-02 02:28:35 +08:00
|
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
|
|
)
|
|
|
|
self.config = config
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
x: mx.array,
|
|
|
|
mask: Optional[mx.array] = None,
|
|
|
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
|
|
) -> mx.array:
|
|
|
|
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
|
|
|
|
h = x + r
|
|
|
|
r = self.mlp(self.post_attention_layernorm(h))
|
|
|
|
out = h + r
|
|
|
|
return out, cache
|
|
|
|
|
|
|
|
|
|
|
|
class Llama(nn.Module):
|
|
|
|
def __init__(self, config: TextConfig):
|
|
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.num_hidden_layers = config.num_hidden_layers
|
|
|
|
assert self.vocab_size > 0
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
|
|
self.layers = [
|
|
|
|
TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
|
|
|
|
]
|
2024-03-23 22:13:51 +08:00
|
|
|
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
2024-03-02 02:28:35 +08:00
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
inputs: mx.array,
|
|
|
|
cache=None,
|
|
|
|
inputs_embeds=None,
|
|
|
|
):
|
|
|
|
# for passing merged input embeddings
|
|
|
|
if inputs_embeds is None:
|
|
|
|
h = self.embed_tokens(inputs)
|
|
|
|
else:
|
|
|
|
h = inputs_embeds
|
|
|
|
|
|
|
|
mask = None
|
|
|
|
if h.shape[1] > 1:
|
|
|
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
|
|
|
|
mask = mask.astype(h.dtype)
|
|
|
|
|
|
|
|
if cache is None:
|
|
|
|
cache = [None] * len(self.layers)
|
|
|
|
|
|
|
|
for e, layer in enumerate(self.layers):
|
|
|
|
h, cache[e] = layer(h, mask, cache[e])
|
|
|
|
|
|
|
|
return self.norm(h), cache
|
|
|
|
|
|
|
|
|
|
|
|
class LanguageModel(nn.Module):
|
|
|
|
def __init__(self, config: TextConfig):
|
|
|
|
super().__init__()
|
|
|
|
self.model_type = config.model_type
|
|
|
|
if self.model_type != "llama":
|
|
|
|
raise ValueError(
|
|
|
|
f"Model type {self.model_type} not supported. Currently only 'llama' is supported"
|
|
|
|
)
|
|
|
|
self.model = Llama(config)
|
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
self,
|
|
|
|
inputs: mx.array,
|
|
|
|
cache=None,
|
|
|
|
inputs_embeds=None,
|
|
|
|
):
|
|
|
|
out, cache = self.model(inputs, cache, inputs_embeds)
|
|
|
|
return self.lm_head(out), cache
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def sanitize(weights):
|
|
|
|
# Remove unused precomputed rotary freqs
|
|
|
|
return {
|
|
|
|
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
|
|
|
|
}
|