mlx-examples/llava/vision.py

224 lines
7.2 KiB
Python
Raw Normal View History

# Copyright © 2024 Apple Inc.
import inspect
import math
from dataclasses import dataclass
from typing import Optional
import mlx.core as mx
import mlx.nn as nn
@dataclass
class VisionConfig:
model_type: str
num_hidden_layers: int = 24
hidden_size: int = 1024
intermediate_size: int = 4096
num_attention_heads: int = 16
image_size: int = 336
patch_size: int = 14
projection_dim: int = 768
vocab_size: int = 32000
num_channels: int = 3
layer_norm_eps: float = 1e-5
@classmethod
def from_dict(cls, params):
return cls(
**{
k: v
for k, v in params.items()
if k in inspect.signature(cls).parameters
}
)
class Attention(nn.Module):
def __init__(
self,
dims: int,
num_heads: int,
query_input_dims: Optional[int] = None,
key_input_dims: Optional[int] = None,
value_input_dims: Optional[int] = None,
value_dims: Optional[int] = None,
value_output_dims: Optional[int] = None,
bias: bool = False,
):
super().__init__()
if (dims % num_heads) != 0:
raise ValueError(
"The input feature dimensions should be divisible by the "
f"number of heads ({dims} % {num_heads}) != 0"
)
query_input_dims = query_input_dims or dims
key_input_dims = key_input_dims or dims
value_input_dims = value_input_dims or key_input_dims
value_dims = value_dims or dims
value_output_dims = value_output_dims or dims
self.num_heads = num_heads
self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
def __call__(self, queries, keys, values, mask=None):
queries = self.q_proj(queries)
keys = self.k_proj(keys)
values = self.v_proj(values)
num_heads = self.num_heads
B, L, D = queries.shape
_, S, _ = keys.shape
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 3, 1)
values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
scale = math.sqrt(1 / queries.shape[-1])
scores = (queries * scale) @ keys
if mask is not None:
scores = scores + mask.astype(scores.dtype)
scores = mx.softmax(scores, axis=-1)
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.out_proj(values_hat)
class MLP(nn.Module):
def __init__(self, config: VisionConfig):
super().__init__()
self.activation_fn = nn.GELU(approx="fast")
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def __call__(self, x: mx.array) -> mx.array:
x = self.activation_fn(self.fc1(x))
x = self.fc2(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, config: VisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = Attention(
config.hidden_size, config.num_attention_heads, bias=True
)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = MLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
y = self.layer_norm1(x)
y = self.self_attn(y, y, y, mask)
x = x + y
y = self.layer_norm2(x)
y = self.mlp(y)
return x + y
class Encoder(nn.Module):
def __init__(self, config: VisionConfig):
super().__init__()
self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
class VisionEmbeddings(nn.Module):
def __init__(self, config: VisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = mx.zeros((config.hidden_size,))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
def __call__(self, x: mx.array) -> mx.array:
batch_size = x.shape[0]
patch_embeddings = self.patch_embedding(x)
patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
embed_dim = patch_embeddings.shape[-1]
cls_embeddings = mx.broadcast_to(
self.class_embedding, (batch_size, 1, embed_dim)
)
embeddings = mx.concatenate((cls_embeddings, patch_embeddings), axis=1)
embeddings += self.position_embedding.weight
return embeddings
class ClipVisionModel(nn.Module):
def __init__(self, config: VisionConfig):
super().__init__()
self.embeddings = VisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(config.hidden_size)
self.encoder = Encoder(config)
self.post_layernorm = nn.LayerNorm(config.hidden_size)
def __call__(
self,
x: mx.array,
output_hidden_states: Optional[bool] = None,
) -> mx.array:
x = self.embeddings(x)
x = self.pre_layrnorm(x)
encoder_states = (x,) if output_hidden_states else None
for l in self.encoder.layers:
x = l(x, mask=None)
if output_hidden_states:
encoder_states = encoder_states + (x,)
pooler_output = self.post_layernorm(x[:, 0, :])
return pooler_output, x, encoder_states
class VisionModel(nn.Module):
def __init__(self, config: VisionConfig):
super().__init__()
self.model_type = config.model_type
if self.model_type != "clip_vision_model":
raise ValueError(f"Unsupported model type: {self.model_type}")
self.vision_model = ClipVisionModel(config)
def __call__(
self, x: mx.array, output_hidden_states: Optional[bool] = None
) -> mx.array:
return self.vision_model(x, output_hidden_states)
@staticmethod
def sanitize(weights):
sanitized_weights = {}
for k, v in weights.items():
if "position_ids" in k:
# Remove unused position_ids
continue
elif "patch_embedding.weight" in k:
# PyTorch conv2d weight tensors have shape:
# [out_channels, in_channels, kH, KW]
# MLX conv2d expects the weight be of shape:
# [out_channels, kH, KW, in_channels]
sanitized_weights[k] = v.transpose(0, 2, 3, 1)
else:
sanitized_weights[k] = v
return sanitized_weights