mlx-examples/mnist/main.py

105 lines
2.7 KiB
Python
Raw Normal View History

2023-12-01 03:08:53 +08:00
# Copyright © 2023 Apple Inc.
2023-11-30 00:17:26 +08:00
import argparse
import time
from functools import partial
2023-11-30 00:17:26 +08:00
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
import numpy as np
2023-11-30 00:17:26 +08:00
import mnist
class MLP(nn.Module):
"""A simple MLP."""
def __init__(
self, num_layers: int, input_dim: int, hidden_dim: int, output_dim: int
):
super().__init__()
layer_sizes = [input_dim] + [hidden_dim] * num_layers + [output_dim]
self.layers = [
nn.Linear(idim, odim)
for idim, odim in zip(layer_sizes[:-1], layer_sizes[1:])
]
def __call__(self, x):
for l in self.layers[:-1]:
x = nn.relu(l(x))
2023-11-30 00:17:26 +08:00
return self.layers[-1](x)
def loss_fn(model, X, y):
return nn.losses.cross_entropy(model(X), y, reduction="mean")
2023-11-30 00:17:26 +08:00
def batch_iterate(batch_size, X, y):
perm = mx.array(np.random.permutation(y.size))
for s in range(0, y.size, batch_size):
ids = perm[s : s + batch_size]
yield X[ids], y[ids]
def main(args):
2023-11-30 00:17:26 +08:00
seed = 0
num_layers = 2
hidden_dim = 32
num_classes = 10
batch_size = 256
num_epochs = 10
learning_rate = 1e-1
np.random.seed(seed)
# Load the data
train_images, train_labels, test_images, test_labels = map(
mx.array, getattr(mnist, args.dataset)()
)
2023-11-30 00:17:26 +08:00
# Load the model
model = MLP(num_layers, train_images.shape[-1], hidden_dim, num_classes)
mx.eval(model.parameters())
optimizer = optim.SGD(learning_rate=learning_rate)
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
@partial(mx.compile, inputs=model.state, outputs=model.state)
def step(X, y):
loss, grads = loss_and_grad_fn(model, X, y)
optimizer.update(model, grads)
return loss
@partial(mx.compile, inputs=model.state)
def eval_fn(X, y):
return mx.mean(mx.argmax(model(X), axis=1) == y)
2023-11-30 00:17:26 +08:00
for e in range(num_epochs):
tic = time.perf_counter()
for X, y in batch_iterate(batch_size, train_images, train_labels):
step(X, y)
mx.eval(model.state)
accuracy = eval_fn(test_images, test_labels)
2023-11-30 00:17:26 +08:00
toc = time.perf_counter()
print(
f"Epoch {e}: Test accuracy {accuracy.item():.3f},"
f" Time {toc - tic:.3f} (s)"
)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Train a simple MLP on MNIST with MLX.")
parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
parser.add_argument(
"--dataset",
type=str,
default="mnist",
choices=["mnist", "fashion_mnist"],
help="The dataset to use.",
)
2023-11-30 00:17:26 +08:00
args = parser.parse_args()
if not args.gpu:
mx.set_default_device(mx.cpu)
main(args)