mlx-examples/llms/speculative_decoding/model.py

327 lines
12 KiB
Python
Raw Normal View History

from typing import List, Optional, Tuple
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from mlx.utils import tree_map
from transformers import T5Config
def _relative_position_bucket(
relative_position, bidirectional=True, num_buckets=32, max_distance=128
):
"""
Adapted from HF Tensorflow:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).astype(mx.int16) * num_buckets
relative_position = mx.abs(relative_position)
else:
relative_position = -mx.minimum(
relative_position, mx.zeros_like(relative_position)
)
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
scale = (num_buckets - max_exact) / np.log(max_distance / max_exact)
relative_position_if_large = max_exact + (
mx.log(relative_position.astype(mx.float32) / max_exact) * scale
).astype(mx.int16)
relative_position_if_large = mx.minimum(relative_position_if_large, num_buckets - 1)
relative_buckets += mx.where(
is_small, relative_position, relative_position_if_large
)
return relative_buckets
class RelativePositionBias(nn.Module):
def __init__(self, config: T5Config, bidirectional: bool):
self.bidirectional = bidirectional
self.num_buckets = config.relative_attention_num_buckets
self.max_distance = config.relative_attention_max_distance
self.n_heads = config.num_heads
self.embeddings = nn.Embedding(
config.relative_attention_num_buckets, config.num_heads
)
def __call__(self, query_length: int, key_length: int, offset: int = 0):
"""Compute binned relative position bias"""
context_position = mx.arange(offset, query_length)[:, None]
memory_position = mx.arange(key_length)[None, :]
# shape (query_length, key_length)
relative_position = memory_position - context_position
relative_position_bucket = _relative_position_bucket(
relative_position,
bidirectional=self.bidirectional,
num_buckets=self.num_buckets,
max_distance=self.max_distance,
)
# shape (query_length, key_length, num_heads)
values = self.embeddings(relative_position_bucket)
# shape (num_heads, query_length, key_length)
return values.transpose(2, 0, 1)
class MultiHeadAttention(nn.Module):
def __init__(self, config: T5Config):
super().__init__()
inner_dim = config.d_kv * config.num_heads
self.num_heads = config.num_heads
self.query_proj = nn.Linear(config.d_model, inner_dim, bias=False)
self.key_proj = nn.Linear(config.d_model, inner_dim, bias=False)
self.value_proj = nn.Linear(config.d_model, inner_dim, bias=False)
self.out_proj = nn.Linear(inner_dim, config.d_model, bias=False)
def __call__(
self,
queries: mx.array,
keys: mx.array,
values: mx.array,
mask: Optional[mx.array],
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> Tuple[mx.array, Tuple[mx.array, mx.array]]:
queries = self.query_proj(queries)
keys = self.key_proj(keys)
values = self.value_proj(values)
num_heads = self.num_heads
B, L, _ = queries.shape
_, S, _ = keys.shape
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
key_cache, value_cache = cache
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
# Dimensions are [batch x num heads x sequence x hidden dim]
scores = queries @ keys.transpose(0, 1, 3, 2)
if mask is not None:
scores = scores + mask.astype(scores.dtype)
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.out_proj(values_hat), (keys, values)
class DenseActivation(nn.Module):
def __init__(self, config: T5Config):
super().__init__()
mlp_dims = config.d_ff or config.d_model * 4
self.gated = config.feed_forward_proj.startswith("gated")
if self.gated:
self.wi_0 = nn.Linear(config.d_model, mlp_dims, bias=False)
self.wi_1 = nn.Linear(config.d_model, mlp_dims, bias=False)
else:
self.wi = nn.Linear(config.d_model, mlp_dims, bias=False)
self.wo = nn.Linear(mlp_dims, config.d_model, bias=False)
activation = config.feed_forward_proj.removeprefix("gated-")
if activation == "relu":
self.act = nn.relu
elif activation == "gelu":
self.act = nn.gelu
elif activation == "silu":
self.act = nn.silu
else:
raise ValueError(f"Unknown activation: {activation}")
def __call__(self, x):
if self.gated:
hidden_act = self.act(self.wi_0(x))
hidden_linear = self.wi_1(x)
x = hidden_act * hidden_linear
else:
x = self.act(self.wi(x))
return self.wo(x)
class TransformerEncoderLayer(nn.Module):
def __init__(self, config: T5Config):
super().__init__()
self.attention = MultiHeadAttention(config)
self.ln1 = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
self.ln2 = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dense = DenseActivation(config)
def __call__(self, x, mask):
y = self.ln1(x)
y, _ = self.attention(y, y, y, mask=mask)
x = x + y
y = self.ln2(x)
y = self.dense(y)
return x + y
class TransformerEncoder(nn.Module):
def __init__(self, config: T5Config):
super().__init__()
self.layers = [
TransformerEncoderLayer(config) for i in range(config.num_layers)
]
self.ln = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
self.relative_attention_bias = RelativePositionBias(config, bidirectional=True)
def __call__(self, x: mx.array):
pos_bias = self.relative_attention_bias(x.shape[1], x.shape[1])
for layer in self.layers:
x = layer(x, mask=pos_bias)
return self.ln(x)
class TransformerDecoderLayer(nn.Module):
def __init__(self, config: T5Config):
super().__init__()
self.self_attention = MultiHeadAttention(config)
self.cross_attention = MultiHeadAttention(config)
self.ln1 = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
self.ln2 = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
self.ln3 = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dense = DenseActivation(config)
def __call__(
self,
x: mx.array,
memory: mx.array,
mask: mx.array,
memory_mask: mx.array,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> Tuple[mx.array, Tuple[mx.array, mx.array]]:
y = self.ln1(x)
y, new_cache = self.self_attention(y, y, y, mask, cache)
x = x + y
y = self.ln2(x)
y, _ = self.cross_attention(y, memory, memory, memory_mask)
x = x + y
y = self.ln3(x)
y = self.dense(y)
x = x + y
return x, new_cache
def create_additive_causal_mask(N: int, offset: int = 0):
rinds = mx.arange(offset + N)
linds = mx.arange(offset, offset + N) if offset else rinds
mask = linds[:, None] < rinds[None]
return mask * -1e9
class TransformerDecoder(nn.Module):
def __init__(self, config: T5Config):
super().__init__()
n_layers = getattr(config, "num_decoder_layers", config.num_layers)
self.layers = [TransformerDecoderLayer(config) for i in range(n_layers)]
self.ln = nn.RMSNorm(config.d_model, eps=config.layer_norm_epsilon)
self.relative_attention_bias = RelativePositionBias(config, bidirectional=False)
def __call__(self, x, memory, cache=None):
if cache[0] is not None:
offset = cache[0][0].shape[2]
else:
offset = 0
T = x.shape[1]
if T > 1:
mask = create_additive_causal_mask(T, offset)
else:
mask = None
pos_bias = self.relative_attention_bias(T + offset, T + offset, offset=offset)
if mask is not None:
mask += pos_bias
else:
mask = pos_bias
for e, layer in enumerate(self.layers):
x, cache[e] = layer(x, memory, mask, None, cache=cache[e])
x = self.ln(x)
return x, cache
class OutputHead(nn.Module):
def __init__(self, config: T5Config):
self.linear = nn.Linear(config.d_model, config.vocab_size, bias=False)
def __call__(self, inputs):
return self.linear(inputs)
class Model(nn.Module):
def __init__(self, config: T5Config):
self.wte = nn.Embedding(config.vocab_size, config.d_model)
self.encoder = TransformerEncoder(config)
self.decoder = TransformerDecoder(config)
self.tie_word_embeddings = config.tie_word_embeddings
if not self.tie_word_embeddings:
self.lm_head = OutputHead(config)
self.model_dim = config.d_model
self.reset_cache()
def encode(self, inputs: mx.array):
return self.encoder(self.wte(inputs))
def truncate_cache(self, num_to_truncate):
if num_to_truncate <= 0:
return
cache_length = self.cache[0][0].shape[2]
if num_to_truncate < cache_length:
self.cache = tree_map(lambda x: x[:, :, :-num_to_truncate, :], self.cache)
else:
self.reset_cache()
def reset_cache(self):
self.cache = [None] * len(self.decoder.layers)
def decode(
self,
inputs: mx.array,
memory: mx.array,
):
inputs = self.wte(inputs)
y, self.cache = self.decoder(inputs, memory=memory, cache=self.cache)
if not self.tie_word_embeddings:
y *= self.model_dim**-0.5
y = self.lm_head(y)
else:
y = y @ self.wte.weight.T
return y
def __call__(
self,
inputs: mx.array,
decoder_inputs: mx.array,
):
return self.decode(decoder_inputs, self.encode(inputs))[0]