mlx-examples/llms/gguf_llm/README.md

53 lines
1.3 KiB
Markdown
Raw Normal View History

# LLMs in MLX with GGUF
An example generating text using GGUF format models in MLX.[^1]
> [!NOTE]
> MLX is able to read most quantization formats from GGUF directly. However,
> only a few quantizations are supported directly: `Q4_0`, `Q4_1`, and `Q8_0`.
> Unsupported quantizations will be cast to `float16`.
## Setup
Install the dependencies:
```bash
pip install -r requirements.txt
```
### Run
Run with:
```bash
python generate.py \
--repo <hugging_face_repo> \
--gguf <file.gguf> \
--prompt "Write a quicksort in Python"
```
For example, to generate text with Mistral 7B use:
```bash
python generate.py \
--repo TheBloke/Mistral-7B-v0.1-GGUF \
--gguf mistral-7b-v0.1.Q8_0.gguf \
--prompt "Write a quicksort in Python"
```
Run `python generate.py --help` for more options.
Models that have been tested and work include:
- [TheBloke/Mistral-7B-v0.1-GGUF](https://huggingface.co/TheBloke/Mistral-7B-v0.1-GGUF),
for quantized models use:
- `mistral-7b-v0.1.Q8_0.gguf`
- `mistral-7b-v0.1.Q4_0.gguf`
- [TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF](https://huggingface.co/TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF),
for quantized models use:
- `tinyllama-1.1b-chat-v1.0.Q8_0.gguf`
- `tinyllama-1.1b-chat-v1.0.Q4_0.gguf`
[^1]: For more information on GGUF see [the documentation](https://github.com/ggerganov/ggml/blob/master/docs/gguf.md).