2024-10-12 02:53:29 +08:00
|
|
|
|
import math
|
|
|
|
|
from dataclasses import dataclass, field
|
2024-10-31 04:23:13 +08:00
|
|
|
|
from typing import Optional, Tuple, Union
|
|
|
|
|
|
2024-10-12 02:53:29 +08:00
|
|
|
|
import mlx.core as mx
|
|
|
|
|
import mlx.nn as nn
|
|
|
|
|
|
2024-10-23 00:25:59 +08:00
|
|
|
|
from .base import BaseModelArgs
|
2024-10-31 04:23:13 +08:00
|
|
|
|
from .cache import Mamba2Cache
|
2024-10-12 02:53:29 +08:00
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
|
class ModelArgs(BaseModelArgs):
|
2024-10-20 22:11:39 +08:00
|
|
|
|
num_heads: int
|
|
|
|
|
head_dim: int
|
|
|
|
|
vocab_size: int
|
|
|
|
|
hidden_size: int
|
|
|
|
|
state_size: int
|
|
|
|
|
num_hidden_layers: int
|
|
|
|
|
layer_norm_epsilon: float
|
|
|
|
|
expand: int
|
|
|
|
|
conv_kernel: int
|
|
|
|
|
n_groups: int
|
|
|
|
|
use_bias: bool
|
|
|
|
|
use_conv_bias: bool
|
2024-10-23 00:25:59 +08:00
|
|
|
|
initializer_range: float
|
2024-10-20 22:11:39 +08:00
|
|
|
|
residual_in_fp32: bool
|
|
|
|
|
time_step_min: float
|
|
|
|
|
time_step_max: float
|
|
|
|
|
time_step_floor: float
|
|
|
|
|
rescale_prenorm_residual: bool
|
|
|
|
|
use_cache: bool
|
|
|
|
|
rms_norm: bool
|
|
|
|
|
chunk_size: int
|
|
|
|
|
tie_word_embeddings: bool
|
2024-10-31 04:23:13 +08:00
|
|
|
|
intermediate_size: int = None
|
2024-10-12 02:53:29 +08:00
|
|
|
|
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
|
2024-10-20 22:11:39 +08:00
|
|
|
|
time_step_rank: Union[int, str] = "auto"
|
|
|
|
|
model_type: str = "mamba2"
|
2024-10-12 02:53:29 +08:00
|
|
|
|
|
|
|
|
|
def __post_init__(self):
|
2024-10-31 04:23:13 +08:00
|
|
|
|
self.intermediate_size = int(self.expand * self.hidden_size) # E*D = ED
|
|
|
|
|
|
2024-10-12 02:53:29 +08:00
|
|
|
|
if not hasattr(self, "head_dim"):
|
|
|
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
|
|
|
if self.time_step_rank == "auto":
|
|
|
|
|
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
|
|
|
|
|
def selective_scan(x, A, B, C, chunk_size):
|
|
|
|
|
"""
|
|
|
|
|
Selective scan implementation for training.
|
|
|
|
|
|
|
|
|
|
Arguments
|
|
|
|
|
x: (batch, seqlen, n_heads, d_head)
|
|
|
|
|
A: (batch, seqlen, n_heads)
|
|
|
|
|
B: (batch, seqlen, n_heads, d_state)
|
|
|
|
|
C: (batch, seqlen, n_heads, d_state)
|
|
|
|
|
|
|
|
|
|
Return
|
|
|
|
|
y: (batch, seqlen, n_heads, d_head)
|
|
|
|
|
"""
|
|
|
|
|
assert x.shape[1] % chunk_size == 0
|
2024-10-23 00:25:59 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# Reshape into chunks
|
|
|
|
|
def chunk_reshape(m):
|
|
|
|
|
shape = list(m.shape)
|
|
|
|
|
shape[1:2] = [shape[1] // chunk_size, chunk_size]
|
|
|
|
|
return m.reshape(shape)
|
|
|
|
|
|
|
|
|
|
x, A, B, C = map(chunk_reshape, (x, A, B, C))
|
|
|
|
|
A = mx.transpose(A, [0, 3, 1, 2])
|
|
|
|
|
|
|
|
|
|
# Compute cumulative sums
|
|
|
|
|
A_cumsum = mx.cumsum(A, axis=-1)
|
|
|
|
|
|
|
|
|
|
# Process chunks
|
|
|
|
|
L = mx.exp(selective_cumsum(A))
|
|
|
|
|
Y_diag = mx.einsum('bclhn,bcshn,bhcls,bcshp->bclhp', C, B, L, x)
|
|
|
|
|
|
|
|
|
|
decay_states = mx.exp(A_cumsum[..., -1:] - A_cumsum)
|
|
|
|
|
states = mx.einsum('bclhn,bhcl,bclhp->bchpn', B, decay_states, x)
|
|
|
|
|
|
|
|
|
|
initial_states = mx.zeros_like(states[:, :1])
|
|
|
|
|
states = mx.concatenate([initial_states, states], axis=1)
|
|
|
|
|
decay_chunk = mx.exp(selective_cumsum(mx.pad(A_cumsum[..., -1], ((0,0), (0,0), (1,0)))))
|
|
|
|
|
new_states = mx.einsum('bhzc,bchpn->bzhpn', decay_chunk, states)
|
|
|
|
|
states = new_states[:, :-1]
|
|
|
|
|
|
|
|
|
|
state_decay_out = mx.exp(A_cumsum)
|
|
|
|
|
Y_off = mx.einsum('bclhn,bchpn,bhcl->bclhp', C, states, state_decay_out)
|
|
|
|
|
|
|
|
|
|
Y = (Y_diag + Y_off).reshape((-1, x.shape[1] * chunk_size, *Y_diag.shape[-2:]))
|
|
|
|
|
return Y
|
2024-10-20 22:11:39 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
def selective_cumsum(x: mx.array) -> mx.array:
|
|
|
|
|
"""Stable selective cumulative sum calculation."""
|
|
|
|
|
T = x.shape[-1]
|
|
|
|
|
x = mx.repeat(x[..., None], T, axis=-1)
|
|
|
|
|
mask = mx.tril(mx.ones((T, T)), k=-1)
|
|
|
|
|
x = x * mask
|
|
|
|
|
x_cumsum = mx.cumsum(x, axis=-2)
|
|
|
|
|
mask = mx.tril(mx.ones((T, T)), k=0)
|
|
|
|
|
return mx.where(mask, x_cumsum, float('-inf'))
|
2024-10-12 02:53:29 +08:00
|
|
|
|
|
|
|
|
|
|
2024-10-23 00:25:59 +08:00
|
|
|
|
class Mamba2Block(nn.Module):
|
2024-10-12 02:53:29 +08:00
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.args = args
|
2024-10-31 04:23:13 +08:00
|
|
|
|
|
|
|
|
|
# Project input to get various components [z, x, B, C, dt]
|
|
|
|
|
projection_size = (2 * args.intermediate_size + 2 * args.n_groups * args.state_size + args.num_heads)
|
2024-10-23 00:25:59 +08:00
|
|
|
|
self.in_proj = nn.Linear(
|
|
|
|
|
args.hidden_size,
|
2024-10-31 04:23:13 +08:00
|
|
|
|
projection_size,
|
2024-10-23 00:25:59 +08:00
|
|
|
|
bias=args.use_bias
|
|
|
|
|
)
|
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# Convolution layer
|
|
|
|
|
conv_dim = args.intermediate_size + 2 * args.n_groups * args.state_size
|
|
|
|
|
self.conv1d = nn.Conv1d(
|
|
|
|
|
in_channels=conv_dim,
|
|
|
|
|
out_channels=conv_dim,
|
2024-10-20 22:11:39 +08:00
|
|
|
|
kernel_size=args.conv_kernel,
|
2024-10-31 04:23:13 +08:00
|
|
|
|
groups=conv_dim,
|
|
|
|
|
padding=args.conv_kernel - 1,
|
|
|
|
|
bias=args.use_conv_bias
|
2024-10-12 02:53:29 +08:00
|
|
|
|
)
|
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# SSM parameters
|
2024-10-23 00:25:59 +08:00
|
|
|
|
self.dt_bias = mx.zeros(args.num_heads)
|
2024-10-31 04:23:13 +08:00
|
|
|
|
self.A_log = mx.zeros(args.num_heads)
|
|
|
|
|
self.D = mx.ones(args.num_heads)
|
2024-10-12 02:53:29 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# Output projections
|
|
|
|
|
self.norm = nn.RMSNorm(args.intermediate_size, eps=args.layer_norm_epsilon)
|
2024-10-23 00:25:59 +08:00
|
|
|
|
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
2024-10-12 02:53:29 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
def __call__(self, u: mx.array, cache=None) -> mx.array:
|
|
|
|
|
# return self.forward_training(x) if x.shape[1] > 1 else self.forward_inference(x, cache)
|
|
|
|
|
|
|
|
|
|
# def forward_training(self, u: mx.array) -> mx.array:
|
|
|
|
|
# # Reset cache during training
|
|
|
|
|
# self.cache = None
|
2024-10-20 22:11:39 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# # Input projection and splitting
|
|
|
|
|
# zxbcdt = self.in_proj(u)
|
|
|
|
|
# z, xBC, dt = mx.split(
|
|
|
|
|
# zxbcdt,
|
|
|
|
|
# [
|
|
|
|
|
# self.args.hidden_size,
|
|
|
|
|
# self.args.hidden_size + 2 * self.args.state_size
|
|
|
|
|
# ],
|
|
|
|
|
# axis=-1
|
|
|
|
|
# )
|
|
|
|
|
|
|
|
|
|
# # Time step processing
|
|
|
|
|
# dt = mx.clip(
|
|
|
|
|
# nn.softplus(dt + self.dt_bias),
|
|
|
|
|
# self.args.time_step_min,
|
|
|
|
|
# self.args.time_step_max
|
|
|
|
|
# )
|
|
|
|
|
|
|
|
|
|
# # Convolution processing
|
|
|
|
|
# xBC_t = mx.transpose(xBC, [0, 2, 1])
|
|
|
|
|
# conv_out = self.conv1d(xBC_t)
|
|
|
|
|
# xBC = mx.transpose(conv_out, [0, 2, 1])[:, :u.shape[1]]
|
|
|
|
|
# xBC = mx.sigmoid(xBC) * xBC # SiLU
|
|
|
|
|
|
|
|
|
|
# # Split states
|
|
|
|
|
# x, B, C = mx.split(
|
|
|
|
|
# xBC,
|
|
|
|
|
# [self.args.hidden_size, self.args.state_size],
|
|
|
|
|
# axis=-1
|
|
|
|
|
# )
|
|
|
|
|
|
|
|
|
|
# # Reshape for selective scan
|
|
|
|
|
# x = x.reshape((-1, x.shape[1], self.args.num_heads, self.args.head_dim))
|
|
|
|
|
# A = -mx.exp(self.A_log)
|
|
|
|
|
|
|
|
|
|
# # Apply selective scan
|
|
|
|
|
# y = selective_scan(
|
|
|
|
|
# x * dt[..., None],
|
|
|
|
|
# A * dt,
|
|
|
|
|
# B[..., None, :],
|
|
|
|
|
# C[..., None, :],
|
|
|
|
|
# self.args.chunk_size
|
|
|
|
|
# )
|
|
|
|
|
|
|
|
|
|
# # Output processing
|
|
|
|
|
# y = y + x * self.D[None, None, :, None]
|
|
|
|
|
# y = y.reshape((-1, y.shape[1], self.args.hidden_size))
|
|
|
|
|
# y = self.norm(y, z)
|
|
|
|
|
# y = self.out_proj(y)
|
2024-10-20 22:11:39 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# return y
|
|
|
|
|
|
|
|
|
|
# def forward_inference(self, u: mx.array, cache=None) -> mx.array:
|
|
|
|
|
# """
|
|
|
|
|
# u: (B, 1, D)
|
|
|
|
|
# cache: (h_cache, conv_cache)
|
|
|
|
|
# """
|
|
|
|
|
# """Single token processing during inference."""
|
|
|
|
|
# assert u.shape[1] == 1, "Inference mode expects single token"
|
2024-10-20 22:11:39 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# batch_size = u.shape[0]
|
|
|
|
|
# # Use provided cache or create new one
|
|
|
|
|
# self.cache = cache if cache is not None else Mamba2Cache.get_cache(self.args, batch_size, None)
|
2024-10-20 22:11:39 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# # Project input
|
|
|
|
|
# zxbcdt = self.in_proj(u.squeeze(1)) # (B, 2D)
|
|
|
|
|
# d_mlp = (zxbcdt.shape[-1] - 2 * self.args.hidden_size - 2 * self.args.n_groups * self.args.state_size - self.args.num_heads) // 2
|
|
|
|
|
|
|
|
|
|
# # (1, 768) (1, 0) (1, 0) (1, 256) (1, 0) (1, 3328)
|
|
|
|
|
# y0, z0, x0, z, xBC, dt = mx.split(
|
|
|
|
|
# zxbcdt,
|
|
|
|
|
# [
|
|
|
|
|
# d_mlp,
|
|
|
|
|
# d_mlp,
|
|
|
|
|
# self.args.hidden_size,
|
|
|
|
|
# self.args.hidden_size + 2 * self.args.n_groups * self.args.state_size,
|
|
|
|
|
# self.args.num_heads
|
|
|
|
|
# ],
|
|
|
|
|
# axis=-1
|
|
|
|
|
# )
|
|
|
|
|
|
|
|
|
|
# # Update convolution state and apply
|
|
|
|
|
# conv_state = self.cache.update_conv_state(xBC)
|
|
|
|
|
# xBC = mx.sum(conv_state[:, :, -1] * mx.transpose(self.conv1d.weight, [1, 0, 2]), axis=-1) # (B, D) (4, 1792)
|
|
|
|
|
|
|
|
|
|
# if self.args.use_conv_bias:
|
|
|
|
|
# xBC = xBC + self.conv1d.bias
|
|
|
|
|
|
|
|
|
|
# xBC = mx.sigmoid(xBC) * xBC # SiLU (4, 1792)
|
|
|
|
|
|
|
|
|
|
# # Split states and ensure proper shapes
|
|
|
|
|
# a0, x, B, C = mx.split(
|
|
|
|
|
# xBC, # (4, 1792)
|
|
|
|
|
# [
|
|
|
|
|
# self.args.hidden_size,
|
|
|
|
|
# self.args.n_groups * self.args.state_size,
|
|
|
|
|
# self.args.n_groups * self.args.state_size
|
|
|
|
|
# ],
|
|
|
|
|
# axis=-1
|
|
|
|
|
# )
|
2024-10-20 22:11:39 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# # SSM step with explicit shapes
|
|
|
|
|
# A = -mx.exp(self.A_log) # (num_heads) (24,)
|
|
|
|
|
# print(A.shape) # (24,)
|
|
|
|
|
# print(dt.shape) # (1, 3328)
|
|
|
|
|
# dA = mx.exp(dt * A[None, :]) # Shape: (batch_size, num_heads) <------- her eis the error
|
2024-10-23 00:25:59 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# # Reshape x considering intermediate size
|
|
|
|
|
# # x shape should be (batch_size * num_heads, head_dim)
|
|
|
|
|
# x = mx.reshape(x, (batch_size, self.args.num_heads, -1))
|
|
|
|
|
# assert x.shape[-1] == self.args.head_dim, f"Head dimension mismatch: {x.shape[-1]} vs {self.args.head_dim}"
|
2024-10-24 22:16:42 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# B = mx.reshape(B, (batch_size, -1)) # Should be (batch_size, state_size)
|
|
|
|
|
# C = mx.reshape(C, (batch_size, -1)) # Should be (batch_size, state_size)
|
2024-10-24 22:16:42 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# # Compute dBx with explicit shapes
|
|
|
|
|
# dBx = mx.einsum('bh,bs,bhd->bhds', dt, B, x)
|
2024-10-24 22:16:42 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# ssm_state = self.cache.update_ssm_state(dA, dBx)
|
|
|
|
|
|
|
|
|
|
# y = mx.einsum('bhds,bs->bhd', ssm_state, C)
|
|
|
|
|
# y = y + x * self.D[None, :, None]
|
|
|
|
|
# y = mx.reshape(y, (batch_size, self.args.hidden_size))
|
|
|
|
|
|
|
|
|
|
# # Output processing
|
|
|
|
|
# y = self.norm(y, z)
|
2024-10-24 22:16:42 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# if d_mlp > 0:
|
|
|
|
|
# y = mx.cat([nn.silu(z0) * x0, y], axis=-1)
|
2024-10-24 22:16:42 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# y = self.out_proj(y)
|
2024-10-24 22:16:42 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# return mx.expand_dims(y, 1)
|
2024-10-24 22:16:42 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
assert u.shape[1] == 1, "Inference mode expects single token"
|
|
|
|
|
|
|
|
|
|
batch_size = u.shape[0]
|
|
|
|
|
# Use provided cache or create new one
|
|
|
|
|
self.cache = cache if cache is not None else Mamba2Cache.get_cache(self.args, batch_size, None)
|
2024-10-24 22:16:42 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# Project input
|
|
|
|
|
zxbcdt = self.in_proj(u.squeeze(1)) # (B, projection_size)
|
2024-10-24 22:16:42 +08:00
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# Calculate splits based on model dimensions
|
|
|
|
|
d_mlp = self.args.intermediate_size
|
|
|
|
|
d_state = self.args.state_size * self.args.n_groups
|
|
|
|
|
|
|
|
|
|
# Split the projection into its components
|
|
|
|
|
splits = [
|
|
|
|
|
d_mlp, # y0
|
|
|
|
|
d_mlp, # z0
|
|
|
|
|
self.args.hidden_size, # x0
|
|
|
|
|
self.args.hidden_size, # z
|
|
|
|
|
d_state * 2, # xBC (includes both B and C)
|
|
|
|
|
self.args.num_heads # dt
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
y0, z0, x0, z, xBC, dt = mx.split(zxbcdt, splits[:-1], axis=-1)
|
|
|
|
|
|
|
|
|
|
# Update convolution state and apply
|
|
|
|
|
conv_state = self.cache.update_conv_state(xBC)
|
|
|
|
|
xBC = mx.sum(conv_state[:, :, -1] * mx.transpose(self.conv1d.weight, [1, 0, 2]), axis=-1)
|
|
|
|
|
|
|
|
|
|
if self.args.use_conv_bias:
|
|
|
|
|
xBC = xBC + self.conv1d.bias
|
|
|
|
|
|
|
|
|
|
xBC = mx.sigmoid(xBC) * xBC # SiLU
|
|
|
|
|
|
|
|
|
|
# Split states and reshape
|
|
|
|
|
x, BC = mx.split(xBC, [self.args.intermediate_size], axis=-1)
|
|
|
|
|
B, C = mx.split(BC, [d_state], axis=-1)
|
|
|
|
|
|
|
|
|
|
# Reshape for SSM computation
|
|
|
|
|
x = mx.reshape(x, (batch_size, self.args.num_heads, -1)) # (B, H, head_dim)
|
|
|
|
|
B = mx.reshape(B, (batch_size, self.args.num_heads, -1)) # (B, H, state_per_head)
|
|
|
|
|
C = mx.reshape(C, (batch_size, self.args.num_heads, -1)) # (B, H, state_per_head)
|
|
|
|
|
|
|
|
|
|
# Process dt to match expected shape
|
|
|
|
|
dt = mx.reshape(dt, (batch_size, self.args.num_heads)) # (B, H)
|
2024-10-24 22:16:42 +08:00
|
|
|
|
dt = mx.clip(
|
|
|
|
|
nn.softplus(dt + self.dt_bias),
|
|
|
|
|
self.args.time_step_min,
|
|
|
|
|
self.args.time_step_max
|
|
|
|
|
)
|
2024-10-31 04:23:13 +08:00
|
|
|
|
|
|
|
|
|
# SSM step
|
|
|
|
|
A = -mx.exp(self.A_log) # (H,)
|
|
|
|
|
dA = mx.exp(dt * A[None, :]) # (B, H)
|
|
|
|
|
|
|
|
|
|
# Compute dBx
|
|
|
|
|
dBx = mx.einsum('bh,bhs,bhd->bhds', dt, B, x)
|
|
|
|
|
|
|
|
|
|
# Update SSM state and compute output
|
|
|
|
|
ssm_state = self.cache.update_ssm_state(dA, dBx)
|
|
|
|
|
y = mx.einsum('bhds,bhs->bhd', ssm_state, C)
|
|
|
|
|
y = y + x * self.D[None, :, None]
|
|
|
|
|
|
|
|
|
|
# Reshape output
|
|
|
|
|
y = mx.reshape(y, (batch_size, self.args.hidden_size))
|
|
|
|
|
|
|
|
|
|
# Final output processing
|
|
|
|
|
y = self.norm(y, z)
|
|
|
|
|
|
|
|
|
|
if d_mlp > 0:
|
|
|
|
|
y = mx.concat([nn.silu(z0) * x0, y], axis=-1)
|
|
|
|
|
|
2024-10-24 22:16:42 +08:00
|
|
|
|
y = self.out_proj(y)
|
2024-10-31 04:23:13 +08:00
|
|
|
|
|
|
|
|
|
return mx.expand_dims(y, 1) # (B, 1, D)
|
2024-10-24 22:16:42 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.mixer = Mamba2Block(args)
|
|
|
|
|
self.norm = nn.RMSNorm(args.hidden_size)
|
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
|
|
|
|
# x : (B, L, D)
|
|
|
|
|
return self.mixer(self.norm(x), cache) + x # (B, L, D)
|
2024-10-24 22:16:42 +08:00
|
|
|
|
|
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
class Mamba2Model(nn.Module):
|
2024-10-24 22:16:42 +08:00
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.args = args
|
|
|
|
|
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
|
|
|
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
|
|
|
|
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
|
|
|
|
# x : (B, L)
|
2024-10-24 22:16:42 +08:00
|
|
|
|
x = self.embeddings(x)
|
2024-10-31 04:23:13 +08:00
|
|
|
|
# x : (B, L, D)
|
2024-10-24 22:16:42 +08:00
|
|
|
|
if cache is None:
|
|
|
|
|
cache = [None] * len(self.layers)
|
2024-10-31 04:23:13 +08:00
|
|
|
|
|
|
|
|
|
for layer, layer_cache in zip(self.layers, cache):
|
|
|
|
|
x = layer(x, layer_cache)
|
2024-10-24 22:16:42 +08:00
|
|
|
|
return self.norm_f(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Model(nn.Module):
|
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.args = args
|
2024-10-31 04:23:13 +08:00
|
|
|
|
self.backbone = Mamba2Model(args)
|
2024-10-24 22:16:42 +08:00
|
|
|
|
|
|
|
|
|
if not args.tie_word_embeddings:
|
|
|
|
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
|
|
|
|
2024-10-31 04:23:13 +08:00
|
|
|
|
def __call__(self, inputs: mx.array, cache=None) -> mx.array:
|
|
|
|
|
# inputs : (B, L)
|
2024-10-24 22:16:42 +08:00
|
|
|
|
B, T = inputs.shape
|
|
|
|
|
|
|
|
|
|
x = self.backbone(inputs, cache)
|
|
|
|
|
|
|
|
|
|
if self.args.tie_word_embeddings:
|
|
|
|
|
logits = self.backbone.embeddings.as_linear(x)
|
|
|
|
|
else:
|
|
|
|
|
logits = self.lm_head(x)
|
|
|
|
|
|
|
|
|
|
return logits
|
2024-10-31 04:23:13 +08:00
|
|
|
|
|
|
|
|
|
def make_cache(self, batch_size=1):
|
|
|
|
|
return [Mamba2Cache(
|
|
|
|
|
batch_size=batch_size,
|
|
|
|
|
hidden_size=self.args.hidden_size,
|
|
|
|
|
state_size=self.args.state_size,
|
|
|
|
|
conv_kernel=self.args.conv_kernel,
|
|
|
|
|
num_heads=self.args.num_heads,
|
|
|
|
|
head_dim=self.args.head_dim
|
|
|
|
|
) for _ in range(len(self.backbone.layers))]
|
2024-10-24 22:16:42 +08:00
|
|
|
|
|
|
|
|
|
def sanitize(self, weights):
|
|
|
|
|
for k, v in weights.items():
|
2024-10-31 04:23:13 +08:00
|
|
|
|
if "conv1d.weight" in k and v.ndim == 3:
|
|
|
|
|
weights[k] = v.moveaxis(2, 1)
|
|
|
|
|
return weights
|