mlx-examples/llms/tests/test_sample_utils.py

92 lines
3.2 KiB
Python
Raw Normal View History

import unittest
import mlx.core as mx
from mlx_lm.sample_utils import min_p_sampling, top_k_sampling, top_p_sampling
class TestSampleUtils(unittest.TestCase):
def test_top_p_sampling(self):
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
logits = mx.log(probs)
2025-03-08 21:55:49 +08:00
actual_logits = top_p_sampling(logits, 0.3)
actual_probs = mx.softmax(actual_logits.squeeze())
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
2025-03-08 21:55:49 +08:00
actual_logits = top_p_sampling(logits, 0.95)
actual_probs = mx.softmax(actual_logits.squeeze())
self.assertEqual(probs.squeeze().tolist(), actual_probs.tolist())
probs = mx.array([0.0, 0.5, 0.4, 0.1])[None]
logits = mx.log(probs)
2025-03-08 21:55:49 +08:00
actual_logits = top_p_sampling(logits, 0.4)
actual_probs = mx.softmax(actual_logits.squeeze())
self.assertEqual(actual_probs.tolist(), [0.0, 1.0, 0.0, 0.0])
actual_logits = top_p_sampling(logits, 0.6)
actual_probs = mx.softmax(actual_logits.squeeze())
self.assertEqual(
[round(p, 4) for p in actual_probs.tolist()], [0.0, 0.5556, 0.4444, 0.0]
)
actual_logits = top_p_sampling(logits, 0.95)
actual_probs = mx.softmax(actual_logits.squeeze())
actual_rounded = [round(p, 4) for p in actual_probs.tolist()]
expected_rounded = [0.0, 0.5, 0.4, 0.1]
self.assertEqual(actual_rounded, expected_rounded)
self.assertAlmostEqual(sum(actual_probs.tolist()), 1.0)
# Batch mode works
2025-03-08 21:55:49 +08:00
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.1, 0.1]])
logits = mx.log(probs)
2025-03-08 21:55:49 +08:00
actual_logits = top_p_sampling(logits, 0.5)
actual_probs = mx.softmax(actual_logits, axis=-1)
self.assertEqual(
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
)
def test_min_p_sampling(self):
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
logits = mx.log(probs)
temperature = 1.0
token = min_p_sampling(logits, 0.8)
self.assertEqual(token, 0)
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
logits = mx.log(probs)
temperature = 1.0
for _ in range(5):
token = min_p_sampling(logits, 0.05)
self.assertTrue(token in (0, 3))
# Batch mode works
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
logits = mx.log(probs)
tokens = min_p_sampling(logits, 0.7)
self.assertEqual(tokens.tolist(), [0, 1])
def test_top_k_sampling(self):
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
logits = mx.log(probs)
token = top_k_sampling(logits, 1).item()
self.assertEqual(token, 0)
probs = mx.array([0.5, 0.0, 0.0, 0.5])[None]
tokens = set()
for _ in range(100):
token = top_k_sampling(logits, 2)
tokens.add(token.item())
self.assertEqual(tokens, {0, 3})
# Batch mode works
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
logits = mx.log(probs)
tokens = top_k_sampling(logits, 1)
self.assertEqual(tokens.tolist(), [0, 1])
if __name__ == "__main__":
unittest.main()