2024-03-22 03:18:23 +08:00
|
|
|
import unittest
|
|
|
|
|
|
|
|
import mlx.core as mx
|
2024-12-19 10:46:50 +08:00
|
|
|
from mlx_lm.sample_utils import min_p_sampling, top_k_sampling, top_p_sampling
|
2024-03-22 03:18:23 +08:00
|
|
|
|
|
|
|
|
2024-11-24 03:47:06 +08:00
|
|
|
class TestSampleUtils(unittest.TestCase):
|
2024-08-16 02:29:09 +08:00
|
|
|
def test_top_p_sampling(self):
|
|
|
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
|
|
|
logits = mx.log(probs)
|
|
|
|
|
2025-03-08 21:55:49 +08:00
|
|
|
actual_logits = top_p_sampling(logits, 0.3)
|
|
|
|
actual_probs = mx.softmax(actual_logits.squeeze())
|
|
|
|
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
2024-08-16 02:29:09 +08:00
|
|
|
|
2025-03-08 21:55:49 +08:00
|
|
|
actual_logits = top_p_sampling(logits, 0.95)
|
|
|
|
actual_probs = mx.softmax(actual_logits.squeeze())
|
|
|
|
self.assertEqual(probs.squeeze().tolist(), actual_probs.tolist())
|
2024-08-16 02:29:09 +08:00
|
|
|
|
|
|
|
probs = mx.array([0.0, 0.5, 0.4, 0.1])[None]
|
|
|
|
logits = mx.log(probs)
|
2025-03-08 21:55:49 +08:00
|
|
|
actual_logits = top_p_sampling(logits, 0.4)
|
|
|
|
actual_probs = mx.softmax(actual_logits.squeeze())
|
|
|
|
self.assertEqual(actual_probs.tolist(), [0.0, 1.0, 0.0, 0.0])
|
|
|
|
|
|
|
|
actual_logits = top_p_sampling(logits, 0.6)
|
|
|
|
actual_probs = mx.softmax(actual_logits.squeeze())
|
|
|
|
self.assertEqual(
|
|
|
|
[round(p, 4) for p in actual_probs.tolist()], [0.0, 0.5556, 0.4444, 0.0]
|
|
|
|
)
|
|
|
|
|
|
|
|
actual_logits = top_p_sampling(logits, 0.95)
|
|
|
|
actual_probs = mx.softmax(actual_logits.squeeze())
|
|
|
|
actual_rounded = [round(p, 4) for p in actual_probs.tolist()]
|
|
|
|
expected_rounded = [0.0, 0.5, 0.4, 0.1]
|
|
|
|
self.assertEqual(actual_rounded, expected_rounded)
|
|
|
|
self.assertAlmostEqual(sum(actual_probs.tolist()), 1.0)
|
2024-03-22 03:18:23 +08:00
|
|
|
|
2025-01-28 07:40:31 +08:00
|
|
|
# Batch mode works
|
2025-03-08 21:55:49 +08:00
|
|
|
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.1, 0.1]])
|
2025-01-28 07:40:31 +08:00
|
|
|
logits = mx.log(probs)
|
2025-03-08 21:55:49 +08:00
|
|
|
actual_logits = top_p_sampling(logits, 0.5)
|
|
|
|
actual_probs = mx.softmax(actual_logits, axis=-1)
|
|
|
|
self.assertEqual(
|
|
|
|
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
|
|
|
)
|
2025-01-28 07:40:31 +08:00
|
|
|
|
2024-11-24 03:47:06 +08:00
|
|
|
def test_min_p_sampling(self):
|
|
|
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
|
|
|
logits = mx.log(probs)
|
|
|
|
temperature = 1.0
|
|
|
|
token = min_p_sampling(logits, 0.8)
|
|
|
|
self.assertEqual(token, 0)
|
|
|
|
|
|
|
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
|
|
|
logits = mx.log(probs)
|
|
|
|
temperature = 1.0
|
|
|
|
for _ in range(5):
|
|
|
|
token = min_p_sampling(logits, 0.05)
|
|
|
|
self.assertTrue(token in (0, 3))
|
|
|
|
|
2025-01-28 07:40:31 +08:00
|
|
|
# Batch mode works
|
|
|
|
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
|
|
|
logits = mx.log(probs)
|
|
|
|
tokens = min_p_sampling(logits, 0.7)
|
|
|
|
self.assertEqual(tokens.tolist(), [0, 1])
|
|
|
|
|
2024-12-19 10:46:50 +08:00
|
|
|
def test_top_k_sampling(self):
|
|
|
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
|
|
|
logits = mx.log(probs)
|
|
|
|
|
|
|
|
token = top_k_sampling(logits, 1).item()
|
|
|
|
self.assertEqual(token, 0)
|
|
|
|
|
|
|
|
probs = mx.array([0.5, 0.0, 0.0, 0.5])[None]
|
|
|
|
tokens = set()
|
|
|
|
for _ in range(100):
|
|
|
|
token = top_k_sampling(logits, 2)
|
|
|
|
tokens.add(token.item())
|
|
|
|
self.assertEqual(tokens, {0, 3})
|
|
|
|
|
|
|
|
# Batch mode works
|
|
|
|
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
|
|
|
logits = mx.log(probs)
|
|
|
|
|
|
|
|
tokens = top_k_sampling(logits, 1)
|
|
|
|
self.assertEqual(tokens.tolist(), [0, 1])
|
|
|
|
|
2024-03-22 03:18:23 +08:00
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
unittest.main()
|