mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-29 18:26:37 +08:00
40 lines
1.5 KiB
Python
40 lines
1.5 KiB
Python
![]() |
import unittest
|
||
|
import numpy as np
|
||
|
import mlx.nn as nn
|
||
|
from mlx.nn.utils import average_gradients
|
||
|
from mlx.utils import tree_flatten
|
||
|
from transformers import PreTrainedTokenizerFast
|
||
|
from llms.mlx_lm.tuner.trainer import default_loss, instruct_loss
|
||
|
|
||
|
class TestLossFunctions(unittest.TestCase):
|
||
|
|
||
|
def setUp(self):
|
||
|
self.tokenizer = PreTrainedTokenizerFast.from_pretrained("gpt2")
|
||
|
self.model = nn.Module()
|
||
|
self.inputs = np.array([[1, 2, 3], [4, 5, 6]])
|
||
|
self.targets = np.array([[1, 2, 3], [4, 5, 6]])
|
||
|
self.lengths = np.array([3, 3])
|
||
|
|
||
|
def test_default_loss(self):
|
||
|
loss, ntoks = default_loss(self.model, self.inputs, self.targets, self.lengths)
|
||
|
self.assertIsInstance(loss, nn.Tensor)
|
||
|
self.assertIsInstance(ntoks, nn.Tensor)
|
||
|
|
||
|
def test_instruct_loss(self):
|
||
|
loss, ntoks = instruct_loss(self.model, self.inputs, self.targets, self.lengths)
|
||
|
self.assertIsInstance(loss, nn.Tensor)
|
||
|
self.assertIsInstance(ntoks, nn.Tensor)
|
||
|
|
||
|
def test_instruct_loss_with_masking(self):
|
||
|
loss, ntoks = instruct_loss(self.model, self.inputs, self.targets, self.lengths, mask_input=True)
|
||
|
self.assertIsInstance(loss, nn.Tensor)
|
||
|
self.assertIsInstance(ntoks, nn.Tensor)
|
||
|
|
||
|
def test_instruct_loss_without_masking(self):
|
||
|
loss, ntoks = instruct_loss(self.model, self.inputs, self.targets, self.lengths, mask_input=False)
|
||
|
self.assertIsInstance(loss, nn.Tensor)
|
||
|
self.assertIsInstance(ntoks, nn.Tensor)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
unittest.main()
|