mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
56 lines
1.8 KiB
Python
56 lines
1.8 KiB
Python
![]() |
import argparse
|
||
|
from PIL import Image
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
import mlx.core as mx
|
||
|
|
||
|
from stable_diffusion import StableDiffusion
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser(
|
||
|
description="Generate images from a textual prompt using stable diffusion"
|
||
|
)
|
||
|
parser.add_argument("prompt")
|
||
|
parser.add_argument("--n_images", type=int, default=4)
|
||
|
parser.add_argument("--steps", type=int, default=50)
|
||
|
parser.add_argument("--cfg", type=float, default=7.5)
|
||
|
parser.add_argument("--negative_prompt", default="")
|
||
|
parser.add_argument("--n_rows", type=int, default=1)
|
||
|
parser.add_argument("--decoding_batch_size", type=int, default=1)
|
||
|
parser.add_argument("--output", default="out.png")
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
sd = StableDiffusion()
|
||
|
|
||
|
# Generate the latent vectors using diffusion
|
||
|
latents = sd.generate_latents(
|
||
|
args.prompt,
|
||
|
n_images=args.n_images,
|
||
|
cfg_weight=args.cfg,
|
||
|
num_steps=args.steps,
|
||
|
negative_text=args.negative_prompt,
|
||
|
)
|
||
|
for x_t in tqdm(latents, total=args.steps):
|
||
|
mx.simplify(x_t)
|
||
|
mx.simplify(x_t)
|
||
|
mx.eval(x_t)
|
||
|
|
||
|
# Decode them into images
|
||
|
decoded = []
|
||
|
for i in tqdm(range(0, args.n_images, args.decoding_batch_size)):
|
||
|
decoded.append(sd.decode(x_t[i : i + args.decoding_batch_size]))
|
||
|
mx.eval(decoded[-1])
|
||
|
|
||
|
# Arrange them on a grid
|
||
|
x = mx.concatenate(decoded, axis=0)
|
||
|
x = mx.pad(x, [(0, 0), (8, 8), (8, 8), (0, 0)])
|
||
|
B, H, W, C = x.shape
|
||
|
x = x.reshape(args.n_rows, B // args.n_rows, H, W, C).transpose(0, 2, 1, 3, 4)
|
||
|
x = x.reshape(args.n_rows * H, B // args.n_rows * W, C)
|
||
|
x = (x * 255).astype(mx.uint8)
|
||
|
|
||
|
# Save them to disc
|
||
|
im = Image.fromarray(x.__array__())
|
||
|
im.save(args.output)
|