mlx-examples/cifar/main.py

157 lines
4.7 KiB
Python
Raw Normal View History

2023-12-13 02:01:06 +08:00
import argparse
import time
from functools import partial
2023-12-13 02:01:06 +08:00
import mlx.core as mx
import mlx.nn as nn
2023-12-13 02:01:06 +08:00
import mlx.optimizers as optim
import resnet
2023-12-13 02:01:06 +08:00
from dataset import get_cifar10
parser = argparse.ArgumentParser(add_help=True)
parser.add_argument(
"--arch",
type=str,
default="resnet20",
2023-12-15 04:09:10 +08:00
choices=[f"resnet{d}" for d in [20, 32, 44, 56, 110, 1202]],
help="model architecture",
2023-12-13 02:01:06 +08:00
)
parser.add_argument("--batch_size", type=int, default=256, help="batch size")
parser.add_argument("--epochs", type=int, default=30, help="number of epochs")
2023-12-13 02:01:06 +08:00
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate")
parser.add_argument("--seed", type=int, default=0, help="random seed")
parser.add_argument("--cpu", action="store_true", help="use cpu only")
2023-12-13 02:01:06 +08:00
2025-03-06 05:33:15 +08:00
def print_zero(group, *args, **kwargs):
if group.rank() != 0:
return
flush = kwargs.pop("flush", True)
print(*args, **kwargs, flush=flush)
2023-12-13 02:01:06 +08:00
def eval_fn(model, inp, tgt):
return mx.mean(mx.argmax(model(inp), axis=1) == tgt)
def train_epoch(model, train_iter, optimizer, epoch):
def train_step(model, inp, tgt):
output = model(inp)
loss = mx.mean(nn.losses.cross_entropy(output, tgt))
acc = mx.mean(mx.argmax(output, axis=1) == tgt)
return loss, acc
2025-03-06 05:33:15 +08:00
world = mx.distributed.init()
losses = 0
accuracies = 0
samples_per_sec = 0
count = 0
def average_stats(stats, count):
if world.size() == 1:
return [s / count for s in stats]
with mx.stream(mx.cpu):
stats = mx.distributed.all_sum(mx.array(stats))
count = mx.distributed.all_sum(count)
return (stats / count).tolist()
2023-12-13 02:01:06 +08:00
state = [model.state, optimizer.state]
@partial(mx.compile, inputs=state, outputs=state)
def step(inp, tgt):
train_step_fn = nn.value_and_grad(model, train_step)
(loss, acc), grads = train_step_fn(model, inp, tgt)
2025-03-06 05:33:15 +08:00
grads = nn.utils.average_gradients(grads)
optimizer.update(model, grads)
return loss, acc
2023-12-13 02:01:06 +08:00
for batch_counter, batch in enumerate(train_iter):
x = mx.array(batch["image"])
y = mx.array(batch["label"])
tic = time.perf_counter()
loss, acc = step(x, y)
2025-03-06 05:33:15 +08:00
mx.eval(loss, acc, state)
toc = time.perf_counter()
2025-03-06 05:33:15 +08:00
losses += loss.item()
accuracies += acc.item()
samples_per_sec += x.shape[0] / (toc - tic)
count += 1
2023-12-13 02:01:06 +08:00
if batch_counter % 10 == 0:
2025-03-06 05:33:15 +08:00
l, a, s = average_stats(
[losses, accuracies, world.size() * samples_per_sec],
count,
)
print_zero(
world,
2023-12-15 04:09:10 +08:00
" | ".join(
(
f"Epoch {epoch:02d} [{batch_counter:03d}]",
2025-03-06 05:33:15 +08:00
f"Train loss {l:.3f}",
f"Train acc {a:.3f}",
f"Throughput: {s:.2f} images/second",
2023-12-15 04:09:10 +08:00
)
2025-03-06 05:33:15 +08:00
),
2023-12-13 02:01:06 +08:00
)
2025-03-06 05:33:15 +08:00
return average_stats([losses, accuracies, world.size() * samples_per_sec], count)
2023-12-13 02:01:06 +08:00
def test_epoch(model, test_iter, epoch):
2025-03-06 05:33:15 +08:00
accuracies = 0
count = 0
2023-12-13 02:01:06 +08:00
for batch_counter, batch in enumerate(test_iter):
x = mx.array(batch["image"])
y = mx.array(batch["label"])
acc = eval_fn(model, x, y)
2025-03-06 05:33:15 +08:00
accuracies += acc.item()
count += 1
with mx.stream(mx.cpu):
accuracies = mx.distributed.all_sum(accuracies)
count = mx.distributed.all_sum(count)
return (accuracies / count).item()
2023-12-13 02:01:06 +08:00
def main(args):
mx.random.seed(args.seed)
2025-03-06 05:33:15 +08:00
# Initialize the distributed group and report the nodes that showed up
world = mx.distributed.init()
if world.size() > 1:
print(f"Starting rank {world.rank()} of {world.size()}", flush=True)
2023-12-15 04:09:10 +08:00
model = getattr(resnet, args.arch)()
2023-12-13 02:01:06 +08:00
2025-03-06 05:33:15 +08:00
print_zero(world, f"Number of params: {model.num_params() / 1e6:0.04f} M")
2023-12-13 02:01:06 +08:00
optimizer = optim.Adam(learning_rate=args.lr)
train_data, test_data = get_cifar10(args.batch_size)
2023-12-13 02:01:06 +08:00
for epoch in range(args.epochs):
2023-12-15 04:09:10 +08:00
tr_loss, tr_acc, throughput = train_epoch(model, train_data, optimizer, epoch)
2025-03-06 05:33:15 +08:00
print_zero(
world,
2023-12-15 04:09:10 +08:00
" | ".join(
(
f"Epoch: {epoch}",
2025-03-06 05:33:15 +08:00
f"avg. Train loss {tr_loss:.3f}",
f"avg. Train acc {tr_acc:.3f}",
f"Throughput: {throughput:.2f} images/sec",
2023-12-15 04:09:10 +08:00
)
2025-03-06 05:33:15 +08:00
),
2023-12-13 02:01:06 +08:00
)
2023-12-15 04:09:10 +08:00
test_acc = test_epoch(model, test_data, epoch)
2025-03-06 05:33:15 +08:00
print_zero(world, f"Epoch: {epoch} | Test acc {test_acc:.3f}")
train_data.reset()
test_data.reset()
2023-12-13 02:01:06 +08:00
if __name__ == "__main__":
args = parser.parse_args()
if args.cpu:
2023-12-13 02:01:06 +08:00
mx.set_default_device(mx.cpu)
main(args)