mlx-examples/llms/mlx_lm/models/gpt_neox.py

220 lines
6.5 KiB
Python
Raw Normal View History

# Copyright © 2023-2024 Apple Inc.
2024-07-11 21:13:17 +08:00
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, Union
2024-07-11 21:13:17 +08:00
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
2024-07-11 21:13:17 +08:00
# Based on the transformers implementation at:
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
max_position_embeddings: int
hidden_size: int
num_attention_heads: int
num_hidden_layers: int
layer_norm_eps: float
vocab_size: int
rotary_emb_base: int
rotary_pct: float
num_key_value_heads: int = None
def __post_init__(self):
if self.num_key_value_heads is None:
self.num_key_value_heads = self.num_attention_heads
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
assert (
args.hidden_size % args.num_attention_heads == 0
), "hidden_size must be divisible by num_attention_heads"
self.hidden_size = args.hidden_size
self.num_attention_heads = args.num_attention_heads
self.head_dim = self.hidden_size // self.num_attention_heads
self.rope = nn.RoPE(
dims=int(self.head_dim * args.rotary_pct),
traditional=False,
base=args.rotary_emb_base,
)
self.scale = self.head_dim**-0.5
self.query_key_value = nn.Linear(
self.hidden_size, 3 * self.hidden_size, bias=True
)
self.dense = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
2024-07-11 21:13:17 +08:00
) -> mx.array:
B, L, D = x.shape
qkv = self.query_key_value(x)
new_qkv_shape = qkv.shape[:-1] + (self.num_attention_heads, 3 * self.head_dim)
qkv = qkv.reshape(*new_qkv_shape)
queries, keys, values = [x.transpose(0, 2, 1, 3) for x in qkv.split(3, -1)]
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = scaled_dot_product_attention(
queries, keys, values, cache=cache, scale=self.scale, mask=mask
2024-07-11 21:13:17 +08:00
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.dense(output)
class MLP(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_size = args.hidden_size
self.dense_h_to_4h = nn.Linear(self.hidden_size, 4 * self.hidden_size)
self.dense_4h_to_h = nn.Linear(4 * self.hidden_size, self.hidden_size)
def __call__(self, x) -> mx.array:
# gelu_approx corresponds to FastGELUActivation in transformers.
return self.dense_4h_to_h(nn.gelu_approx(self.dense_h_to_4h(x)))
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_size = args.hidden_size
self.layer_norm_eps = args.layer_norm_eps
self.attention = Attention(args)
self.mlp = MLP(args)
self.input_layernorm = nn.LayerNorm(
self.hidden_size,
eps=self.layer_norm_eps,
)
self.post_attention_layernorm = nn.LayerNorm(
self.hidden_size, eps=self.layer_norm_eps
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Any] = None,
2024-07-11 21:13:17 +08:00
) -> mx.array:
residual = x
# NeoX runs attention and feedforward network in parallel.
attn = self.attention(self.input_layernorm(x), mask, cache)
ffn = self.mlp(self.post_attention_layernorm(x))
out = attn + ffn + residual
return out
class GPTNeoXModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_size = args.hidden_size
self.vocab_size = args.vocab_size
self.num_hidden_layers = args.num_hidden_layers
self.layer_norm_eps = args.layer_norm_eps
assert self.vocab_size > 0
self.embed_in = nn.Embedding(self.vocab_size, self.hidden_size)
self.embed_out = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
self.h = [TransformerBlock(args=args) for _ in range(self.num_hidden_layers)]
self.final_layer_norm = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps)
def __call__(
self,
inputs: mx.array,
mask: mx.array = None,
2024-07-11 21:13:17 +08:00
cache=None,
):
_, L = inputs.shape
hidden_states = self.embed_in(inputs)
if mask is None:
mask = create_attention_mask(hidden_states, cache)
2024-07-11 21:13:17 +08:00
if cache is None:
cache = [None] * len(self.h)
for layer, c in zip(self.h, cache):
hidden_states = layer(hidden_states, mask, cache=c)
out = self.final_layer_norm(hidden_states)
out = self.embed_out(out)
return out
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_type = args.model_type
self.model = GPTNeoXModel(args)
def __call__(
self,
inputs: mx.array,
mask: mx.array = None,
2024-07-11 21:13:17 +08:00
cache=None,
):
out = self.model(inputs, mask, cache)
2024-07-11 21:13:17 +08:00
return out
def sanitize(self, weights):
new_weights = {}
for w_key, w_value in weights.items():
# Created through register_buffer in Pytorch, not needed here.
ignore_suffixes = [
".attention.bias",
".attention.masked_bias",
".attention.rotary_emb.inv_freq",
]
skip_weight = False
for ignored_suffix in ignore_suffixes:
if w_key.endswith(ignored_suffix):
skip_weight = True
break
if skip_weight:
continue
if not w_key.startswith("model."):
w_key = f"model.{w_key}"
w_key = w_key.replace(".gpt_neox.layers.", ".h.")
w_key = w_key.replace(".gpt_neox.", ".")
new_weights[w_key] = w_value
return new_weights
@property
def layers(self):
return self.model.h