Optimizations for mamba1 (#1213)
* added mx.einsum() operations: before: 41.293 tokens-per-sec, after: 57.822 tokens-per-sec
* Fused Operations in delta, B, C = ... :. Before: 57.822 tokens-per-sec, after: 83.890 tokens-per-sec
* Pre-computing A_log. After: 83.890 tokens-per-sec, before: 85.848 tokens-per-sec
* Update MambaBlock, Batched Input Processing, Improved Cache Handling, Pre-computed Constants, Cleaner State Management, Explicit Return Values:. Before: 82.442 tokens-per-sec, after: 129.130 tokens-per-sec.
* cleaning up and adding apple copyright to helium modelfile
* update Copyright to this year
* nits + even faster
---------
Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2025-02-04 05:36:08 +08:00
|
|
|
# Copyright © 2024-2025 Apple Inc.
|
2024-09-28 22:02:53 +08:00
|
|
|
|
|
|
|
import math
|
|
|
|
from dataclasses import dataclass
|
|
|
|
|
|
|
|
import mlx.core as mx
|
|
|
|
import mlx.nn as nn
|
|
|
|
|
|
|
|
from .base import BaseModelArgs
|
2024-10-08 11:45:51 +08:00
|
|
|
from .cache import MambaCache
|
2024-09-28 22:02:53 +08:00
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class ModelArgs(BaseModelArgs):
|
|
|
|
model_type: str
|
|
|
|
vocab_size: int
|
|
|
|
hidden_size: int
|
|
|
|
intermediate_size: int
|
|
|
|
state_size: int
|
|
|
|
num_hidden_layers: int
|
|
|
|
conv_kernel: int
|
|
|
|
use_bias: bool
|
|
|
|
use_conv_bias: bool
|
|
|
|
time_step_rank: int
|
|
|
|
tie_word_embeddings: bool = True
|
2024-11-05 04:23:30 +08:00
|
|
|
use_bcdt_rms: bool = False
|
|
|
|
mixer_rms_eps: float = 1e-6
|
2024-09-28 22:02:53 +08:00
|
|
|
|
|
|
|
def __post_init__(self):
|
|
|
|
if not hasattr(self, "hidden_size") and hasattr(self, "d_model"):
|
|
|
|
self.hidden_size = self.d_model
|
|
|
|
if not hasattr(self, "intermediate_size") and hasattr(self, "d_inner"):
|
|
|
|
self.intermediate_size = self.d_inner
|
|
|
|
if not hasattr(self, "state_size") and hasattr(self, "d_state"):
|
|
|
|
self.state_size = self.d_state
|
|
|
|
if not hasattr(self, "num_hidden_layers") and hasattr(self, "n_layer"):
|
|
|
|
self.num_hidden_layers = self.n_layer
|
|
|
|
if not hasattr(self, "num_hidden_layers") and hasattr(self, "n_layers"):
|
|
|
|
self.num_hidden_layers = self.n_layers
|
|
|
|
if not hasattr(self, "conv_kernel") and hasattr(self, "d_conv"):
|
|
|
|
self.conv_kernel = self.d_conv
|
|
|
|
if not hasattr(self, "use_bias") and hasattr(self, "bias"):
|
|
|
|
self.use_bias = self.bias
|
|
|
|
if not hasattr(self, "use_conv_bias") and hasattr(self, "conv_bias"):
|
|
|
|
self.use_conv_bias = self.conv_bias
|
|
|
|
|
|
|
|
if self.time_step_rank == "auto":
|
|
|
|
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
2024-11-05 04:23:30 +08:00
|
|
|
if self.model_type == "falcon_mamba":
|
|
|
|
self.use_bcdt_rms = True
|
2024-09-28 22:02:53 +08:00
|
|
|
|
|
|
|
|
|
|
|
class DepthWiseConv1d(nn.Module):
|
|
|
|
def __init__(self, channels, kernel_size, bias=True, padding=0):
|
|
|
|
super().__init__()
|
|
|
|
self.channels = channels
|
|
|
|
self.kernel_size = kernel_size
|
|
|
|
self.padding = padding
|
|
|
|
self.weight = mx.random.normal((self.channels, kernel_size, 1))
|
|
|
|
self.bias = mx.zeros((channels,)) if bias else None
|
|
|
|
|
|
|
|
def __call__(self, x, cache=None):
|
|
|
|
B, L, C = x.shape
|
|
|
|
groups, K, _ = self.weight.shape
|
|
|
|
|
|
|
|
if cache is not None:
|
|
|
|
x = mx.concatenate([cache, x], axis=1)
|
|
|
|
else:
|
|
|
|
x = mx.pad(x, [(0, 0), (K - 1, 0), (0, 0)])
|
|
|
|
|
|
|
|
y = mx.conv_general(x, self.weight, groups=groups)
|
|
|
|
|
|
|
|
if self.bias is not None:
|
|
|
|
y = y + self.bias
|
|
|
|
|
|
|
|
return y, x[:, -K + 1 :, :]
|
|
|
|
|
|
|
|
|
|
|
|
class MambaBlock(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.args = args
|
|
|
|
|
|
|
|
self.hidden_size = args.hidden_size
|
|
|
|
self.ssm_state_size = args.state_size
|
|
|
|
self.conv_kernel_size = args.conv_kernel
|
|
|
|
self.intermediate_size = args.intermediate_size
|
|
|
|
self.time_step_rank = int(args.time_step_rank)
|
|
|
|
self.use_conv_bias = args.use_conv_bias
|
2024-11-05 04:23:30 +08:00
|
|
|
self.use_bcdt_rms = args.use_bcdt_rms
|
|
|
|
if self.use_bcdt_rms:
|
|
|
|
self.mixer_norm = lambda x: mx.fast.rms_norm(
|
|
|
|
x, mx.ones(x.shape[-1], x.dtype), eps=args.mixer_rms_eps
|
|
|
|
)
|
2024-09-28 22:02:53 +08:00
|
|
|
|
|
|
|
self.in_proj = nn.Linear(
|
|
|
|
self.hidden_size, self.intermediate_size * 2, bias=args.use_bias
|
|
|
|
)
|
|
|
|
|
|
|
|
self.conv1d = DepthWiseConv1d(
|
|
|
|
channels=self.intermediate_size,
|
|
|
|
kernel_size=self.conv_kernel_size,
|
|
|
|
bias=self.use_conv_bias,
|
|
|
|
padding=self.conv_kernel_size - 1,
|
|
|
|
)
|
|
|
|
|
|
|
|
self.x_proj = nn.Linear(
|
|
|
|
self.intermediate_size,
|
|
|
|
self.time_step_rank + 2 * self.ssm_state_size,
|
|
|
|
bias=False,
|
|
|
|
)
|
|
|
|
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
|
|
|
|
|
|
|
|
A = mx.repeat(
|
|
|
|
mx.arange(1.0, self.ssm_state_size + 1.0).reshape([1, self.ssm_state_size]),
|
|
|
|
repeats=self.intermediate_size,
|
|
|
|
axis=0,
|
|
|
|
)
|
|
|
|
self.A_log = mx.log(A)
|
|
|
|
self.D = mx.ones([self.intermediate_size])
|
|
|
|
|
|
|
|
self.out_proj = nn.Linear(
|
|
|
|
self.intermediate_size, self.hidden_size, bias=args.use_bias
|
|
|
|
)
|
|
|
|
|
Optimizations for mamba1 (#1213)
* added mx.einsum() operations: before: 41.293 tokens-per-sec, after: 57.822 tokens-per-sec
* Fused Operations in delta, B, C = ... :. Before: 57.822 tokens-per-sec, after: 83.890 tokens-per-sec
* Pre-computing A_log. After: 83.890 tokens-per-sec, before: 85.848 tokens-per-sec
* Update MambaBlock, Batched Input Processing, Improved Cache Handling, Pre-computed Constants, Cleaner State Management, Explicit Return Values:. Before: 82.442 tokens-per-sec, after: 129.130 tokens-per-sec.
* cleaning up and adding apple copyright to helium modelfile
* update Copyright to this year
* nits + even faster
---------
Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2025-02-04 05:36:08 +08:00
|
|
|
def ssm_step(self, x, A, state=None):
|
2024-09-28 22:02:53 +08:00
|
|
|
D = self.D
|
|
|
|
deltaBC = self.x_proj(x)
|
Optimizations for mamba1 (#1213)
* added mx.einsum() operations: before: 41.293 tokens-per-sec, after: 57.822 tokens-per-sec
* Fused Operations in delta, B, C = ... :. Before: 57.822 tokens-per-sec, after: 83.890 tokens-per-sec
* Pre-computing A_log. After: 83.890 tokens-per-sec, before: 85.848 tokens-per-sec
* Update MambaBlock, Batched Input Processing, Improved Cache Handling, Pre-computed Constants, Cleaner State Management, Explicit Return Values:. Before: 82.442 tokens-per-sec, after: 129.130 tokens-per-sec.
* cleaning up and adding apple copyright to helium modelfile
* update Copyright to this year
* nits + even faster
---------
Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2025-02-04 05:36:08 +08:00
|
|
|
delta, B, C = map(
|
|
|
|
self.mixer_norm if self.use_bcdt_rms else lambda x: x,
|
|
|
|
mx.split(
|
|
|
|
deltaBC,
|
|
|
|
[self.time_step_rank, self.time_step_rank + self.ssm_state_size],
|
|
|
|
axis=-1,
|
|
|
|
),
|
2024-09-28 22:02:53 +08:00
|
|
|
)
|
2024-11-05 04:23:30 +08:00
|
|
|
if self.use_bcdt_rms:
|
|
|
|
delta, B, C = map(self.mixer_norm, (delta, B, C))
|
2024-09-28 22:02:53 +08:00
|
|
|
delta = nn.softplus(self.dt_proj(delta))
|
|
|
|
new_state = mx.expand_dims(delta * x, -1) * mx.expand_dims(B, 1)
|
|
|
|
if state is not None:
|
|
|
|
new_state += state * mx.exp(mx.expand_dims(delta, -1) * A)
|
|
|
|
y = (new_state @ mx.expand_dims(C, -1)).squeeze(2)
|
|
|
|
y = y + D * x
|
|
|
|
return y, new_state
|
|
|
|
|
Optimizations for mamba1 (#1213)
* added mx.einsum() operations: before: 41.293 tokens-per-sec, after: 57.822 tokens-per-sec
* Fused Operations in delta, B, C = ... :. Before: 57.822 tokens-per-sec, after: 83.890 tokens-per-sec
* Pre-computing A_log. After: 83.890 tokens-per-sec, before: 85.848 tokens-per-sec
* Update MambaBlock, Batched Input Processing, Improved Cache Handling, Pre-computed Constants, Cleaner State Management, Explicit Return Values:. Before: 82.442 tokens-per-sec, after: 129.130 tokens-per-sec.
* cleaning up and adding apple copyright to helium modelfile
* update Copyright to this year
* nits + even faster
---------
Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2025-02-04 05:36:08 +08:00
|
|
|
def _process_sequence(self, x, conv_cache, state_cache):
|
2024-09-28 22:02:53 +08:00
|
|
|
B, T, D = x.shape
|
Optimizations for mamba1 (#1213)
* added mx.einsum() operations: before: 41.293 tokens-per-sec, after: 57.822 tokens-per-sec
* Fused Operations in delta, B, C = ... :. Before: 57.822 tokens-per-sec, after: 83.890 tokens-per-sec
* Pre-computing A_log. After: 83.890 tokens-per-sec, before: 85.848 tokens-per-sec
* Update MambaBlock, Batched Input Processing, Improved Cache Handling, Pre-computed Constants, Cleaner State Management, Explicit Return Values:. Before: 82.442 tokens-per-sec, after: 129.130 tokens-per-sec.
* cleaning up and adding apple copyright to helium modelfile
* update Copyright to this year
* nits + even faster
---------
Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2025-02-04 05:36:08 +08:00
|
|
|
xz = self.in_proj(x)
|
|
|
|
x, z = xz.split(indices_or_sections=2, axis=-1)
|
|
|
|
|
|
|
|
conv_out, new_conv_cache = self.conv1d(x, conv_cache)
|
|
|
|
x = nn.silu(conv_out)
|
|
|
|
|
|
|
|
A = -mx.exp(self.A_log)
|
2024-09-28 22:02:53 +08:00
|
|
|
|
|
|
|
outputs = []
|
Optimizations for mamba1 (#1213)
* added mx.einsum() operations: before: 41.293 tokens-per-sec, after: 57.822 tokens-per-sec
* Fused Operations in delta, B, C = ... :. Before: 57.822 tokens-per-sec, after: 83.890 tokens-per-sec
* Pre-computing A_log. After: 83.890 tokens-per-sec, before: 85.848 tokens-per-sec
* Update MambaBlock, Batched Input Processing, Improved Cache Handling, Pre-computed Constants, Cleaner State Management, Explicit Return Values:. Before: 82.442 tokens-per-sec, after: 129.130 tokens-per-sec.
* cleaning up and adding apple copyright to helium modelfile
* update Copyright to this year
* nits + even faster
---------
Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2025-02-04 05:36:08 +08:00
|
|
|
current_state = state_cache
|
|
|
|
y = []
|
2024-09-28 22:02:53 +08:00
|
|
|
for t in range(T):
|
Optimizations for mamba1 (#1213)
* added mx.einsum() operations: before: 41.293 tokens-per-sec, after: 57.822 tokens-per-sec
* Fused Operations in delta, B, C = ... :. Before: 57.822 tokens-per-sec, after: 83.890 tokens-per-sec
* Pre-computing A_log. After: 83.890 tokens-per-sec, before: 85.848 tokens-per-sec
* Update MambaBlock, Batched Input Processing, Improved Cache Handling, Pre-computed Constants, Cleaner State Management, Explicit Return Values:. Before: 82.442 tokens-per-sec, after: 129.130 tokens-per-sec.
* cleaning up and adding apple copyright to helium modelfile
* update Copyright to this year
* nits + even faster
---------
Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2025-02-04 05:36:08 +08:00
|
|
|
y_t, current_state = self.ssm_step(x[:, t], A, current_state)
|
|
|
|
y.append(y_t)
|
|
|
|
y = mx.stack(y, axis=1)
|
|
|
|
z = self.out_proj(nn.silu(z) * y)
|
|
|
|
return z, (new_conv_cache, current_state)
|
|
|
|
|
|
|
|
def __call__(self, x, cache):
|
|
|
|
if cache is None:
|
|
|
|
conv_cache, state_cache = None, None
|
|
|
|
else:
|
|
|
|
conv_cache, state_cache = cache[0], cache[1]
|
|
|
|
|
|
|
|
output, (new_conv_cache, new_state_cache) = self._process_sequence(
|
|
|
|
x, conv_cache, state_cache
|
|
|
|
)
|
|
|
|
|
|
|
|
if isinstance(cache, MambaCache):
|
|
|
|
cache[0] = new_conv_cache
|
|
|
|
cache[1] = new_state_cache
|
|
|
|
|
2024-09-28 22:02:53 +08:00
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.mixer = MambaBlock(args)
|
|
|
|
self.norm = nn.RMSNorm(args.hidden_size)
|
|
|
|
|
|
|
|
def __call__(self, x: mx.array, cache):
|
|
|
|
return self.mixer(self.norm(x), cache) + x
|
|
|
|
|
|
|
|
|
|
|
|
class Mamba(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
|
|
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
|
|
|
self.norm_f = nn.RMSNorm(args.hidden_size)
|
|
|
|
|
|
|
|
def __call__(self, x: mx.array, cache):
|
|
|
|
x = self.embeddings(x)
|
|
|
|
if cache is None:
|
|
|
|
cache = [None] * len(self.layers)
|
|
|
|
for layer, c in zip(self.layers, cache):
|
|
|
|
x = layer(x, c)
|
|
|
|
return self.norm_f(x)
|
|
|
|
|
|
|
|
|
|
|
|
class Model(nn.Module):
|
|
|
|
def __init__(self, args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.args = args
|
|
|
|
self.model_type = args.model_type
|
|
|
|
self.backbone = Mamba(args)
|
|
|
|
if not args.tie_word_embeddings:
|
|
|
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
|
|
|
|
|
|
def __call__(self, inputs: mx.array, cache=None):
|
|
|
|
B, T = inputs.shape
|
|
|
|
|
|
|
|
x = self.backbone(inputs, cache)
|
|
|
|
|
|
|
|
if self.args.tie_word_embeddings:
|
|
|
|
logits = self.backbone.embeddings.as_linear(x)
|
|
|
|
else:
|
|
|
|
logits = self.lm_head(x)
|
|
|
|
|
|
|
|
return logits
|
|
|
|
|
|
|
|
def sanitize(self, weights):
|
|
|
|
for k, v in weights.items():
|
2024-10-23 06:44:08 +08:00
|
|
|
if "conv1d.weight" in k and v.shape[-1] != 1:
|
2024-09-28 22:02:53 +08:00
|
|
|
weights[k] = v.moveaxis(2, 1)
|
|
|
|
return weights
|
|
|
|
|
2024-10-08 11:45:51 +08:00
|
|
|
def make_cache(self):
|
2024-09-28 22:02:53 +08:00
|
|
|
return [MambaCache() for _ in range(len(self.layers))]
|
|
|
|
|
|
|
|
@property
|
|
|
|
def layers(self):
|
|
|
|
return self.backbone.layers
|