mlx-examples/llms/mlx_lm/models/phimoe.py

215 lines
7.1 KiB
Python
Raw Normal View History

# Copyright © 2024 Apple Inc.
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Union
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs, create_attention_mask, scaled_dot_product_attention
from .su_rope import SuScaledRotaryEmbedding
from .switch_layers import SwitchGLU
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str = "phimoe"
vocab_size: int = 32064
hidden_size: int = 4096
intermediate_size: int = 6400
num_hidden_layers: int = 32
num_attention_heads: int = 32
num_key_value_heads: int = 8
max_position_embeddings: int = 131072
original_max_position_embeddings: int = 4096
rms_norm_eps: float = 1e-6
rope_scaling: Dict[str, Union[float, List[float]]] = None
num_local_experts: int = 16
num_experts_per_tok: int = 2
rope_theta: float = 10000.0
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
dim = args.hidden_size
self.n_heads = n_heads = args.num_attention_heads
self.n_kv_heads = n_kv_heads = args.num_key_value_heads
head_dim = args.hidden_size // n_heads
self.scale = head_dim**-0.5
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=True)
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=True)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=True)
self.rope = SuScaledRotaryEmbedding(
head_dim,
base=args.rope_theta,
max_position_embeddings=args.max_position_embeddings,
original_max_position_embeddings=args.original_max_position_embeddings,
short_factor=args.rope_scaling["short_factor"],
long_factor=args.rope_scaling["long_factor"],
short_mscale=args.rope_scaling["short_mscale"],
long_mscale=args.rope_scaling["long_mscale"],
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache=None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = scaled_dot_product_attention(
queries, keys, values, cache=cache, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output)
class PhiMoESparseMoeBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_dim = args.hidden_size
self.ffn_dim = args.intermediate_size
self.num_experts = args.num_local_experts
self.top_k = args.num_experts_per_tok
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self.switch_mlp = SwitchGLU(self.hidden_dim, self.ffn_dim, self.num_experts)
def __call__(self, x: mx.array) -> mx.array:
gates = self.gate(x)
k = self.top_k
inds = mx.stop_gradient(mx.argpartition(-gates, kth=k - 1, axis=-1)[..., :k])
scores = mx.take_along_axis(gates, inds, axis=-1)
scores = mx.softmax(scores, axis=-1, precise=True)
y = self.switch_mlp(x, inds)
y = (y * scores[..., None]).sum(axis=-2)
return y
class PhiMoEDecoderLayer(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.hidden_size = args.hidden_size
self.self_attn = Attention(args)
self.block_sparse_moe = PhiMoESparseMoeBlock(args)
self.input_layernorm = nn.LayerNorm(args.hidden_size, eps=args.rms_norm_eps)
self.post_attention_layernorm = nn.LayerNorm(
args.hidden_size, eps=args.rms_norm_eps
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache=None,
) -> mx.array:
residual = x
hidden_states = self.input_layernorm(x)
hidden_states = self.self_attn(hidden_states, mask=mask, cache=cache)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.block_sparse_moe(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class PhiMoEModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [PhiMoEDecoderLayer(args) for _ in range(args.num_hidden_layers)]
self.norm = nn.LayerNorm(args.hidden_size, eps=args.rms_norm_eps)
def __call__(
self,
inputs: mx.array,
mask: mx.array = None,
cache=None,
) -> mx.array:
h = self.embed_tokens(inputs)
if mask is None:
mask = create_attention_mask(h, cache)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
h = layer(h, mask, c)
return self.norm(h)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.model_type = args.model_type
self.args = args
self.model = PhiMoEModel(args)
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=True)
def __call__(
self,
inputs: mx.array,
mask: mx.array = None,
cache=None,
):
out = self.model(inputs, mask, cache)
return self.lm_head(out)
def sanitize(self, weights):
if "model.layers.0.block_sparse_moe.experts.0.w1.weight" not in weights:
return weights
for l in range(self.args.num_hidden_layers):
prefix = f"model.layers.{l}"
for n, m in [("w1", "gate_proj"), ("w2", "down_proj"), ("w3", "up_proj")]:
for k in ["weight", "scales", "biases"]:
if f"{prefix}.block_sparse_moe.experts.0.{n}.{k}" in weights:
to_join = [
weights.pop(
f"{prefix}.block_sparse_moe.experts.{e}.{n}.{k}"
)
for e in range(self.args.num_local_experts)
]
weights[f"{prefix}.block_sparse_moe.switch_mlp.{m}.{k}"] = (
mx.stack(to_join)
)
return weights
@property
def layers(self):
return self.model.layers